'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  twoto(0(x1)) ->
       p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
     , twoto(s(x1)) ->
       p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
     , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
     , twice(s(x1)) ->
       s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
     , p(p(s(x1))) -> p(x1)
     , p(s(x1)) -> x1
     , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
     , 0(x1) -> x1}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  twoto^#(0(x1)) ->
      c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
    , twoto^#(s(x1)) ->
      c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
    , twice^#(0(x1)) ->
      c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))
    , twice^#(s(x1)) ->
      c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
    , p^#(p(s(x1))) -> c_4(p^#(x1))
    , p^#(s(x1)) -> c_5()
    , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
    , 0^#(x1) -> c_7()}
  
  The usable rules are:
   {  twoto(0(x1)) ->
      p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
    , twoto(s(x1)) ->
      p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
    , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
    , twice(s(x1)) ->
      s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
    , p(p(s(x1))) -> p(x1)
    , p(s(x1)) -> x1
    , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
    , 0(x1) -> x1}
  
  The estimated dependency graph contains the following edges:
   {twoto^#(0(x1)) ->
    c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
     ==> {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
   {twoto^#(0(x1)) ->
    c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
     ==> {p^#(p(s(x1))) -> c_4(p^#(x1))}
   {twoto^#(0(x1)) ->
    c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
     ==> {p^#(s(x1)) -> c_5()}
   {twoto^#(s(x1)) ->
    c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
     ==> {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
   {twoto^#(s(x1)) ->
    c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
     ==> {p^#(p(s(x1))) -> c_4(p^#(x1))}
   {twoto^#(s(x1)) ->
    c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
     ==> {p^#(s(x1)) -> c_5()}
   {twice^#(0(x1)) ->
    c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
     ==> {p^#(s(x1)) -> c_5()}
   {twice^#(s(x1)) ->
    c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
     ==> {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
   {twice^#(s(x1)) ->
    c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
     ==> {p^#(p(s(x1))) -> c_4(p^#(x1))}
   {twice^#(s(x1)) ->
    c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
     ==> {p^#(s(x1)) -> c_5()}
   {p^#(p(s(x1))) -> c_4(p^#(x1))}
     ==> {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
   {p^#(p(s(x1))) -> c_4(p^#(x1))}
     ==> {p^#(s(x1)) -> c_5()}
   {p^#(p(s(x1))) -> c_4(p^#(x1))}
     ==> {p^#(p(s(x1))) -> c_4(p^#(x1))}
   {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
     ==> {0^#(x1) -> c_7()}
  
  We consider the following path(s):
   1) {  twoto^#(s(x1)) ->
         c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))
       , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
       , 0^#(x1) -> c_7()}
      
      The usable rules for this path are the following:
      {  twoto(0(x1)) ->
         p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
       , twoto(s(x1)) ->
         p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
       , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twoto(0(x1)) ->
                 p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
               , twoto(s(x1)) ->
                 p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
               , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
               , p^#(p(s(x1))) -> c_4(p^#(x1))
               , twoto^#(s(x1)) ->
                 c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
               , 0^#(x1) -> c_7()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twoto(0(x1)) ->
             p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(s(x1)) ->
             c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
            and weakly orienting the rules
            {twoto(0(x1)) ->
             p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            and weakly orienting the rules
            {  twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(x1) -> c_7()}
            and weakly orienting the rules
            {  p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(x1) -> c_7()}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  0^#(x1) -> c_7()
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [8]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {  0(x1) -> x1
             , 0^#(x1) -> c_7()
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [8]
                  twoto^#(x1) = [1] x1 + [13]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [2]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twoto(s(x1)) ->
                   p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                 , twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
                 , p^#(p(s(x1))) -> c_4(p^#(x1))}
              Weak Rules:
                {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                 , 0(x1) -> x1
                 , 0^#(x1) -> c_7()
                 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                 , twoto^#(s(x1)) ->
                   c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                 , twoto(0(x1)) ->
                   p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twoto(s(x1)) ->
                     p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                   , twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
                   , p^#(p(s(x1))) -> c_4(p^#(x1))}
                Weak Rules:
                  {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                   , 0(x1) -> x1
                   , 0^#(x1) -> c_7()
                   , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                   , twoto^#(s(x1)) ->
                     c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                   , twoto(0(x1)) ->
                     p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  twoto_1(39) -> 28
                 , twoto_1(39) -> 32
                 , twoto_1(39) -> 38
                 , p_1(18) -> 28
                 , p_1(18) -> 32
                 , p_1(18) -> 38
                 , p_1(19) -> 18
                 , p_1(22) -> 21
                 , p_1(22) -> 28
                 , p_1(22) -> 32
                 , p_1(22) -> 38
                 , p_1(23) -> 22
                 , p_1(24) -> 23
                 , p_1(29) -> 28
                 , p_1(30) -> 29
                 , p_1(33) -> 28
                 , p_1(33) -> 32
                 , p_1(34) -> 33
                 , p_1(35) -> 34
                 , p_1(40) -> 39
                 , p_1(42) -> 39
                 , p_1(42) -> 41
                 , p_2(20) -> 28
                 , p_2(20) -> 32
                 , p_2(20) -> 38
                 , p_2(25) -> 22
                 , p_2(26) -> 21
                 , p_2(26) -> 28
                 , p_2(26) -> 32
                 , p_2(26) -> 38
                 , p_2(31) -> 28
                 , p_2(36) -> 33
                 , p_2(37) -> 28
                 , p_2(37) -> 32
                 , s_0(4) -> 4
                 , s_0(4) -> 39
                 , s_0(4) -> 41
                 , s_1(4) -> 42
                 , s_1(20) -> 19
                 , s_1(21) -> 18
                 , s_1(21) -> 20
                 , s_1(25) -> 24
                 , s_1(26) -> 23
                 , s_1(26) -> 25
                 , s_1(27) -> 22
                 , s_1(27) -> 26
                 , s_1(31) -> 30
                 , s_1(32) -> 29
                 , s_1(32) -> 31
                 , s_1(36) -> 35
                 , s_1(37) -> 34
                 , s_1(37) -> 36
                 , s_1(38) -> 33
                 , s_1(38) -> 37
                 , s_1(41) -> 40
                 , twice_1(28) -> 21
                 , twice_1(28) -> 27
                 , twice_1(28) -> 28
                 , twice_1(28) -> 32
                 , twice_1(28) -> 38
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8
                 , p^#_1(18) -> 17
                 , p^#_2(20) -> 43
                 , c_1_1(17) -> 6
                 , c_4_2(43) -> 17
                 , 0^#_0(4) -> 16
                 , c_7_0() -> 16}
      
   2) {  twoto^#(s(x1)) ->
         c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
       , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
      
      The usable rules for this path are the following:
      {  twoto(0(x1)) ->
         p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
       , twoto(s(x1)) ->
         p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
       , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twoto(0(x1)) ->
                 p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
               , twoto(s(x1)) ->
                 p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
               , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , twoto^#(s(x1)) ->
                 c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twoto(0(x1)) ->
             p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {twoto(0(x1)) ->
             p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [4]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            and weakly orienting the rules
            {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [15]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [8]
                  c_1(x1) = [1] x1 + [9]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(s(x1)) ->
             c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
            and weakly orienting the rules
            {  p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [2]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [10]
                  twoto^#(x1) = [1] x1 + [13]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [2]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twoto(s(x1)) ->
                   p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                 , twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  0(x1) -> x1
                 , twoto^#(s(x1)) ->
                   c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                 , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                 , twoto(0(x1)) ->
                   p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twoto(s(x1)) ->
                     p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                   , twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  0(x1) -> x1
                   , twoto^#(s(x1)) ->
                     c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                   , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                   , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                   , twoto(0(x1)) ->
                     p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  twoto_1(39) -> 28
                 , twoto_1(39) -> 32
                 , twoto_1(39) -> 38
                 , p_1(18) -> 28
                 , p_1(18) -> 32
                 , p_1(18) -> 38
                 , p_1(19) -> 18
                 , p_1(22) -> 21
                 , p_1(22) -> 28
                 , p_1(22) -> 32
                 , p_1(22) -> 38
                 , p_1(23) -> 22
                 , p_1(24) -> 23
                 , p_1(29) -> 28
                 , p_1(30) -> 29
                 , p_1(33) -> 28
                 , p_1(33) -> 32
                 , p_1(34) -> 33
                 , p_1(35) -> 34
                 , p_1(40) -> 39
                 , p_1(42) -> 39
                 , p_1(42) -> 41
                 , p_2(20) -> 28
                 , p_2(20) -> 32
                 , p_2(20) -> 38
                 , p_2(25) -> 22
                 , p_2(26) -> 21
                 , p_2(26) -> 28
                 , p_2(26) -> 32
                 , p_2(26) -> 38
                 , p_2(31) -> 28
                 , p_2(36) -> 33
                 , p_2(37) -> 28
                 , p_2(37) -> 32
                 , s_0(4) -> 4
                 , s_0(4) -> 39
                 , s_0(4) -> 41
                 , s_1(4) -> 42
                 , s_1(20) -> 19
                 , s_1(21) -> 18
                 , s_1(21) -> 20
                 , s_1(25) -> 24
                 , s_1(26) -> 23
                 , s_1(26) -> 25
                 , s_1(27) -> 22
                 , s_1(27) -> 26
                 , s_1(31) -> 30
                 , s_1(32) -> 29
                 , s_1(32) -> 31
                 , s_1(36) -> 35
                 , s_1(37) -> 34
                 , s_1(37) -> 36
                 , s_1(38) -> 33
                 , s_1(38) -> 37
                 , s_1(41) -> 40
                 , twice_1(28) -> 21
                 , twice_1(28) -> 27
                 , twice_1(28) -> 28
                 , twice_1(28) -> 32
                 , twice_1(28) -> 38
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8
                 , p^#_1(18) -> 17
                 , c_1_1(17) -> 6
                 , 0^#_0(4) -> 16}
      
   3) {  twoto^#(s(x1)) ->
         c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
       , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
       , 0^#(x1) -> c_7()}
      
      The usable rules for this path are the following:
      {  twoto(0(x1)) ->
         p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
       , twoto(s(x1)) ->
         p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
       , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twoto(0(x1)) ->
                 p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
               , twoto(s(x1)) ->
                 p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
               , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
               , twoto^#(s(x1)) ->
                 c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
               , 0^#(x1) -> c_7()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twoto(0(x1)) ->
             p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(s(x1)) ->
             c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
            and weakly orienting the rules
            {twoto(0(x1)) ->
             p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {  twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [4]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(x1) -> x1
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            and weakly orienting the rules
            {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
             , twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(x1) -> x1
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [4]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(x1) -> c_7()}
            and weakly orienting the rules
            {  0(x1) -> x1
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
             , twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(x1) -> c_7()}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [15]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [8]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twoto(s(x1)) ->
                   p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                 , twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  0^#(x1) -> c_7()
                 , 0(x1) -> x1
                 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                 , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                 , twoto^#(s(x1)) ->
                   c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                 , twoto(0(x1)) ->
                   p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twoto(s(x1)) ->
                     p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                   , twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  0^#(x1) -> c_7()
                   , 0(x1) -> x1
                   , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                   , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                   , twoto^#(s(x1)) ->
                     c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                   , twoto(0(x1)) ->
                     p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  twoto_1(39) -> 28
                 , twoto_1(39) -> 32
                 , twoto_1(39) -> 38
                 , p_1(18) -> 28
                 , p_1(18) -> 32
                 , p_1(18) -> 38
                 , p_1(19) -> 18
                 , p_1(22) -> 21
                 , p_1(22) -> 28
                 , p_1(22) -> 32
                 , p_1(22) -> 38
                 , p_1(23) -> 22
                 , p_1(24) -> 23
                 , p_1(29) -> 28
                 , p_1(30) -> 29
                 , p_1(33) -> 28
                 , p_1(33) -> 32
                 , p_1(34) -> 33
                 , p_1(35) -> 34
                 , p_1(40) -> 39
                 , p_1(42) -> 39
                 , p_1(42) -> 41
                 , p_2(20) -> 28
                 , p_2(20) -> 32
                 , p_2(20) -> 38
                 , p_2(25) -> 22
                 , p_2(26) -> 21
                 , p_2(26) -> 28
                 , p_2(26) -> 32
                 , p_2(26) -> 38
                 , p_2(31) -> 28
                 , p_2(36) -> 33
                 , p_2(37) -> 28
                 , p_2(37) -> 32
                 , s_0(4) -> 4
                 , s_0(4) -> 39
                 , s_0(4) -> 41
                 , s_1(4) -> 42
                 , s_1(20) -> 19
                 , s_1(21) -> 18
                 , s_1(21) -> 20
                 , s_1(25) -> 24
                 , s_1(26) -> 23
                 , s_1(26) -> 25
                 , s_1(27) -> 22
                 , s_1(27) -> 26
                 , s_1(31) -> 30
                 , s_1(32) -> 29
                 , s_1(32) -> 31
                 , s_1(36) -> 35
                 , s_1(37) -> 34
                 , s_1(37) -> 36
                 , s_1(38) -> 33
                 , s_1(38) -> 37
                 , s_1(41) -> 40
                 , twice_1(28) -> 21
                 , twice_1(28) -> 27
                 , twice_1(28) -> 28
                 , twice_1(28) -> 32
                 , twice_1(28) -> 38
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8
                 , p^#_1(18) -> 17
                 , c_1_1(17) -> 6
                 , 0^#_0(4) -> 16
                 , c_7_0() -> 16}
      
   4) {  twoto^#(s(x1)) ->
         c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
       , p^#(s(x1)) -> c_5()}
      
      The usable rules for this path are the following:
      {  twoto(0(x1)) ->
         p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
       , twoto(s(x1)) ->
         p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
       , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twoto(0(x1)) ->
                 p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
               , twoto(s(x1)) ->
                 p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
               , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , twoto^#(s(x1)) ->
                 c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
               , p^#(s(x1)) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twoto(0(x1)) ->
             p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(s(x1)) -> c_5()}
            and weakly orienting the rules
            {twoto(0(x1)) ->
             p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(s(x1)) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [8]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  p^#(s(x1)) -> c_5()
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(s(x1)) ->
             c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
            and weakly orienting the rules
            {  0(x1) -> x1
             , p^#(s(x1)) -> c_5()
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {  twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , 0(x1) -> x1
             , p^#(s(x1)) -> c_5()
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [4]
                  twoto^#(x1) = [1] x1 + [13]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [8]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twoto(s(x1)) ->
                   p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                 , twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                 , twoto^#(s(x1)) ->
                   c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                 , 0(x1) -> x1
                 , p^#(s(x1)) -> c_5()
                 , twoto(0(x1)) ->
                   p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twoto(s(x1)) ->
                     p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                   , twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                   , twoto^#(s(x1)) ->
                     c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                   , 0(x1) -> x1
                   , p^#(s(x1)) -> c_5()
                   , twoto(0(x1)) ->
                     p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  twoto_1(31) -> 20
                 , twoto_1(31) -> 24
                 , twoto_1(31) -> 30
                 , p_1(10) -> 20
                 , p_1(10) -> 24
                 , p_1(10) -> 30
                 , p_1(11) -> 10
                 , p_1(14) -> 13
                 , p_1(14) -> 20
                 , p_1(14) -> 24
                 , p_1(14) -> 30
                 , p_1(15) -> 14
                 , p_1(16) -> 15
                 , p_1(21) -> 20
                 , p_1(22) -> 21
                 , p_1(25) -> 20
                 , p_1(25) -> 24
                 , p_1(26) -> 25
                 , p_1(27) -> 26
                 , p_1(32) -> 31
                 , p_1(34) -> 31
                 , p_1(34) -> 33
                 , p_2(12) -> 20
                 , p_2(12) -> 24
                 , p_2(12) -> 30
                 , p_2(17) -> 14
                 , p_2(18) -> 13
                 , p_2(18) -> 20
                 , p_2(18) -> 24
                 , p_2(18) -> 30
                 , p_2(23) -> 20
                 , p_2(28) -> 25
                 , p_2(29) -> 20
                 , p_2(29) -> 24
                 , s_0(4) -> 4
                 , s_0(4) -> 31
                 , s_0(4) -> 33
                 , s_1(4) -> 34
                 , s_1(12) -> 11
                 , s_1(13) -> 10
                 , s_1(13) -> 12
                 , s_1(17) -> 16
                 , s_1(18) -> 15
                 , s_1(18) -> 17
                 , s_1(19) -> 14
                 , s_1(19) -> 18
                 , s_1(23) -> 22
                 , s_1(24) -> 21
                 , s_1(24) -> 23
                 , s_1(28) -> 27
                 , s_1(29) -> 26
                 , s_1(29) -> 28
                 , s_1(30) -> 25
                 , s_1(30) -> 29
                 , s_1(33) -> 32
                 , twice_1(20) -> 13
                 , twice_1(20) -> 19
                 , twice_1(20) -> 20
                 , twice_1(20) -> 24
                 , twice_1(20) -> 30
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8
                 , p^#_1(10) -> 9
                 , c_1_1(9) -> 6
                 , c_5_0() -> 8
                 , c_5_1() -> 9}
      
   5) {  twoto^#(s(x1)) ->
         c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))
       , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
      
      The usable rules for this path are the following:
      {  twoto(0(x1)) ->
         p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
       , twoto(s(x1)) ->
         p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
       , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twoto(0(x1)) ->
                 p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
               , twoto(s(x1)) ->
                 p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
               , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , p^#(p(s(x1))) -> c_4(p^#(x1))
               , twoto^#(s(x1)) ->
                 c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twoto(0(x1)) ->
             p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(s(x1)) ->
             c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
            and weakly orienting the rules
            {twoto(0(x1)) ->
             p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [8]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(x1) -> x1
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            and weakly orienting the rules
            {  twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(x1) -> x1
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [15]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {  0(x1) -> x1
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [2]
                  twoto^#(x1) = [1] x1 + [13]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [4]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twoto(s(x1)) ->
                   p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                 , twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
                 , p^#(p(s(x1))) -> c_4(p^#(x1))}
              Weak Rules:
                {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                 , 0(x1) -> x1
                 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                 , twoto^#(s(x1)) ->
                   c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                 , twoto(0(x1)) ->
                   p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twoto(s(x1)) ->
                     p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                   , twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
                   , p^#(p(s(x1))) -> c_4(p^#(x1))}
                Weak Rules:
                  {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                   , 0(x1) -> x1
                   , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                   , twoto^#(s(x1)) ->
                     c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                   , twoto(0(x1)) ->
                     p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  twoto_1(39) -> 28
                 , twoto_1(39) -> 32
                 , twoto_1(39) -> 38
                 , p_1(18) -> 28
                 , p_1(18) -> 32
                 , p_1(18) -> 38
                 , p_1(19) -> 18
                 , p_1(22) -> 21
                 , p_1(22) -> 28
                 , p_1(22) -> 32
                 , p_1(22) -> 38
                 , p_1(23) -> 22
                 , p_1(24) -> 23
                 , p_1(29) -> 28
                 , p_1(30) -> 29
                 , p_1(33) -> 28
                 , p_1(33) -> 32
                 , p_1(34) -> 33
                 , p_1(35) -> 34
                 , p_1(40) -> 39
                 , p_1(42) -> 39
                 , p_1(42) -> 41
                 , p_2(20) -> 28
                 , p_2(20) -> 32
                 , p_2(20) -> 38
                 , p_2(25) -> 22
                 , p_2(26) -> 21
                 , p_2(26) -> 28
                 , p_2(26) -> 32
                 , p_2(26) -> 38
                 , p_2(31) -> 28
                 , p_2(36) -> 33
                 , p_2(37) -> 28
                 , p_2(37) -> 32
                 , s_0(4) -> 4
                 , s_0(4) -> 39
                 , s_0(4) -> 41
                 , s_1(4) -> 42
                 , s_1(20) -> 19
                 , s_1(21) -> 18
                 , s_1(21) -> 20
                 , s_1(25) -> 24
                 , s_1(26) -> 23
                 , s_1(26) -> 25
                 , s_1(27) -> 22
                 , s_1(27) -> 26
                 , s_1(31) -> 30
                 , s_1(32) -> 29
                 , s_1(32) -> 31
                 , s_1(36) -> 35
                 , s_1(37) -> 34
                 , s_1(37) -> 36
                 , s_1(38) -> 33
                 , s_1(38) -> 37
                 , s_1(41) -> 40
                 , twice_1(28) -> 21
                 , twice_1(28) -> 27
                 , twice_1(28) -> 28
                 , twice_1(28) -> 32
                 , twice_1(28) -> 38
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8
                 , p^#_1(18) -> 17
                 , p^#_2(20) -> 43
                 , c_1_1(17) -> 6
                 , c_4_2(43) -> 17
                 , 0^#_0(4) -> 16}
      
   6) {  twoto^#(s(x1)) ->
         c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))
       , p^#(s(x1)) -> c_5()}
      
      The usable rules for this path are the following:
      {  twoto(0(x1)) ->
         p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
       , twoto(s(x1)) ->
         p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
       , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twoto(0(x1)) ->
                 p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
               , twoto(s(x1)) ->
                 p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
               , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , p^#(p(s(x1))) -> c_4(p^#(x1))
               , twoto^#(s(x1)) ->
                 c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
               , p^#(s(x1)) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
             , p^#(s(x1)) -> c_5()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  twoto(0(x1)) ->
                 p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
               , p^#(s(x1)) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(s(x1)) ->
             c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
            and weakly orienting the rules
            {  twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
             , p^#(s(x1)) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
             , p^#(s(x1)) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [2]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [3]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [5]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {  0(x1) -> x1
             , twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
             , p^#(s(x1)) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [8]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twoto(s(x1)) ->
                   p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                 , twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
                 , p^#(p(s(x1))) -> c_4(p^#(x1))}
              Weak Rules:
                {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                 , 0(x1) -> x1
                 , twoto^#(s(x1)) ->
                   c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                 , twoto(0(x1)) ->
                   p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
                 , p^#(s(x1)) -> c_5()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twoto(s(x1)) ->
                     p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                   , twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
                   , p^#(p(s(x1))) -> c_4(p^#(x1))}
                Weak Rules:
                  {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                   , 0(x1) -> x1
                   , twoto^#(s(x1)) ->
                     c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                   , twoto(0(x1)) ->
                     p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
                   , p^#(s(x1)) -> c_5()}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  twoto_1(31) -> 20
                 , twoto_1(31) -> 24
                 , twoto_1(31) -> 30
                 , p_1(10) -> 20
                 , p_1(10) -> 24
                 , p_1(10) -> 30
                 , p_1(11) -> 10
                 , p_1(14) -> 13
                 , p_1(14) -> 20
                 , p_1(14) -> 24
                 , p_1(14) -> 30
                 , p_1(15) -> 14
                 , p_1(16) -> 15
                 , p_1(21) -> 20
                 , p_1(22) -> 21
                 , p_1(25) -> 20
                 , p_1(25) -> 24
                 , p_1(26) -> 25
                 , p_1(27) -> 26
                 , p_1(32) -> 31
                 , p_1(34) -> 31
                 , p_1(34) -> 33
                 , p_2(12) -> 20
                 , p_2(12) -> 24
                 , p_2(12) -> 30
                 , p_2(17) -> 14
                 , p_2(18) -> 13
                 , p_2(18) -> 20
                 , p_2(18) -> 24
                 , p_2(18) -> 30
                 , p_2(23) -> 20
                 , p_2(28) -> 25
                 , p_2(29) -> 20
                 , p_2(29) -> 24
                 , s_0(4) -> 4
                 , s_0(4) -> 31
                 , s_0(4) -> 33
                 , s_1(4) -> 34
                 , s_1(12) -> 11
                 , s_1(13) -> 10
                 , s_1(13) -> 12
                 , s_1(17) -> 16
                 , s_1(18) -> 15
                 , s_1(18) -> 17
                 , s_1(19) -> 14
                 , s_1(19) -> 18
                 , s_1(23) -> 22
                 , s_1(24) -> 21
                 , s_1(24) -> 23
                 , s_1(28) -> 27
                 , s_1(29) -> 26
                 , s_1(29) -> 28
                 , s_1(30) -> 25
                 , s_1(30) -> 29
                 , s_1(33) -> 32
                 , twice_1(20) -> 13
                 , twice_1(20) -> 19
                 , twice_1(20) -> 20
                 , twice_1(20) -> 24
                 , twice_1(20) -> 30
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8
                 , p^#_1(10) -> 9
                 , p^#_2(12) -> 35
                 , c_1_1(9) -> 6
                 , c_4_2(35) -> 9
                 , c_5_0() -> 8
                 , c_5_1() -> 9
                 , c_5_2() -> 35}
      
   7) {  twoto^#(s(x1)) ->
         c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))}
      
      The usable rules for this path are the following:
      {  twoto(0(x1)) ->
         p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
       , twoto(s(x1)) ->
         p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
       , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twoto(0(x1)) ->
                 p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
               , twoto(s(x1)) ->
                 p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
               , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , twoto^#(s(x1)) ->
                 c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
               , p^#(p(s(x1))) -> c_4(p^#(x1))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twoto(0(x1)) ->
             p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(s(x1)) ->
             c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
            and weakly orienting the rules
            {twoto(0(x1)) ->
             p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [9]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {  0(x1) -> x1
             , twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [10]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [6]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [2]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twoto(s(x1)) ->
                   p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                 , twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
                 , p^#(p(s(x1))) -> c_4(p^#(x1))}
              Weak Rules:
                {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                 , 0(x1) -> x1
                 , twoto^#(s(x1)) ->
                   c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                 , twoto(0(x1)) ->
                   p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twoto(s(x1)) ->
                     p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                   , twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
                   , p^#(p(s(x1))) -> c_4(p^#(x1))}
                Weak Rules:
                  {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                   , 0(x1) -> x1
                   , twoto^#(s(x1)) ->
                     c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                   , twoto(0(x1)) ->
                     p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  twoto_1(31) -> 20
                 , twoto_1(31) -> 24
                 , twoto_1(31) -> 30
                 , p_1(10) -> 20
                 , p_1(10) -> 24
                 , p_1(10) -> 30
                 , p_1(11) -> 10
                 , p_1(14) -> 13
                 , p_1(14) -> 20
                 , p_1(14) -> 24
                 , p_1(14) -> 30
                 , p_1(15) -> 14
                 , p_1(16) -> 15
                 , p_1(21) -> 20
                 , p_1(22) -> 21
                 , p_1(25) -> 20
                 , p_1(25) -> 24
                 , p_1(26) -> 25
                 , p_1(27) -> 26
                 , p_1(32) -> 31
                 , p_1(34) -> 31
                 , p_1(34) -> 33
                 , p_2(12) -> 20
                 , p_2(12) -> 24
                 , p_2(12) -> 30
                 , p_2(17) -> 14
                 , p_2(18) -> 13
                 , p_2(18) -> 20
                 , p_2(18) -> 24
                 , p_2(18) -> 30
                 , p_2(23) -> 20
                 , p_2(28) -> 25
                 , p_2(29) -> 20
                 , p_2(29) -> 24
                 , s_0(4) -> 4
                 , s_0(4) -> 31
                 , s_0(4) -> 33
                 , s_1(4) -> 34
                 , s_1(12) -> 11
                 , s_1(13) -> 10
                 , s_1(13) -> 12
                 , s_1(17) -> 16
                 , s_1(18) -> 15
                 , s_1(18) -> 17
                 , s_1(19) -> 14
                 , s_1(19) -> 18
                 , s_1(23) -> 22
                 , s_1(24) -> 21
                 , s_1(24) -> 23
                 , s_1(28) -> 27
                 , s_1(29) -> 26
                 , s_1(29) -> 28
                 , s_1(30) -> 25
                 , s_1(30) -> 29
                 , s_1(33) -> 32
                 , twice_1(20) -> 13
                 , twice_1(20) -> 19
                 , twice_1(20) -> 20
                 , twice_1(20) -> 24
                 , twice_1(20) -> 30
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8
                 , p^#_1(10) -> 9
                 , p^#_2(12) -> 35
                 , c_1_1(9) -> 6
                 , c_4_2(35) -> 9}
      
   8) {twoto^#(s(x1)) ->
       c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
      
      The usable rules for this path are the following:
      {  twoto(0(x1)) ->
         p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
       , twoto(s(x1)) ->
         p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
       , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twoto(0(x1)) ->
                 p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
               , twoto(s(x1)) ->
                 p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
               , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , twoto^#(s(x1)) ->
                 c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  twoto(0(x1)) ->
                 p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
               , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [8]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(s(x1)) ->
             c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
            and weakly orienting the rules
            {  twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [4]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  twoto^#(s(x1)) ->
               c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
             , twoto(0(x1)) ->
               p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [2]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twoto(s(x1)) ->
                   p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                 , twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  0(x1) -> x1
                 , twoto^#(s(x1)) ->
                   c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                 , twoto(0(x1)) ->
                   p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
                 , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twoto(s(x1)) ->
                     p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))
                   , twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  0(x1) -> x1
                   , twoto^#(s(x1)) ->
                     c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))
                   , twoto(0(x1)) ->
                     p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))
                   , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  twoto_1(31) -> 20
                 , twoto_1(31) -> 24
                 , twoto_1(31) -> 30
                 , p_1(10) -> 20
                 , p_1(10) -> 24
                 , p_1(10) -> 30
                 , p_1(11) -> 10
                 , p_1(14) -> 13
                 , p_1(14) -> 20
                 , p_1(14) -> 24
                 , p_1(14) -> 30
                 , p_1(15) -> 14
                 , p_1(16) -> 15
                 , p_1(21) -> 20
                 , p_1(22) -> 21
                 , p_1(25) -> 20
                 , p_1(25) -> 24
                 , p_1(26) -> 25
                 , p_1(27) -> 26
                 , p_1(32) -> 31
                 , p_1(34) -> 31
                 , p_1(34) -> 33
                 , p_2(12) -> 20
                 , p_2(12) -> 24
                 , p_2(12) -> 30
                 , p_2(17) -> 14
                 , p_2(18) -> 13
                 , p_2(18) -> 20
                 , p_2(18) -> 24
                 , p_2(18) -> 30
                 , p_2(23) -> 20
                 , p_2(28) -> 25
                 , p_2(29) -> 20
                 , p_2(29) -> 24
                 , s_0(4) -> 4
                 , s_0(4) -> 31
                 , s_0(4) -> 33
                 , s_1(4) -> 34
                 , s_1(12) -> 11
                 , s_1(13) -> 10
                 , s_1(13) -> 12
                 , s_1(17) -> 16
                 , s_1(18) -> 15
                 , s_1(18) -> 17
                 , s_1(19) -> 14
                 , s_1(19) -> 18
                 , s_1(23) -> 22
                 , s_1(24) -> 21
                 , s_1(24) -> 23
                 , s_1(28) -> 27
                 , s_1(29) -> 26
                 , s_1(29) -> 28
                 , s_1(30) -> 25
                 , s_1(30) -> 29
                 , s_1(33) -> 32
                 , twice_1(20) -> 13
                 , twice_1(20) -> 19
                 , twice_1(20) -> 20
                 , twice_1(20) -> 24
                 , twice_1(20) -> 30
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8
                 , p^#_1(10) -> 9
                 , c_1_1(9) -> 6}
      
   9) {  twice^#(s(x1)) ->
         c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))
       , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
       , 0^#(x1) -> c_7()}
      
      The usable rules for this path are the following:
      {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
               , p^#(p(s(x1))) -> c_4(p^#(x1))
               , twice^#(s(x1)) ->
                 c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , 0^#(x1) -> c_7()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice^#(s(x1)) ->
             c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
            and weakly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [6]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            and weakly orienting the rules
            {  twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [7]
                  c_4(x1) = [1] x1 + [7]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(x1) -> c_7()}
            and weakly orienting the rules
            {  p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(x1) -> c_7()}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  0^#(x1) -> c_7()
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [2]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , p^#(p(s(x1))) -> c_4(p^#(x1))}
            and weakly orienting the rules
            {  0(x1) -> x1
             , 0^#(x1) -> c_7()
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p^#(p(s(x1))) -> c_4(p^#(x1))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [2]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [6]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [15]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p^#(p(s(x1))) -> c_4(p^#(x1))
                 , 0(x1) -> x1
                 , 0^#(x1) -> c_7()
                 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                 , twice^#(s(x1)) ->
                   c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p^#(p(s(x1))) -> c_4(p^#(x1))
                   , 0(x1) -> x1
                   , 0^#(x1) -> c_7()
                   , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                   , twice^#(s(x1)) ->
                     c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  p_0(4) -> 27
                 , p_0(4) -> 29
                 , p_0(4) -> 31
                 , p_0(4) -> 33
                 , p_0(19) -> 18
                 , p_0(20) -> 19
                 , p_0(21) -> 20
                 , p_0(22) -> 19
                 , p_0(23) -> 18
                 , p_0(28) -> 27
                 , p_0(30) -> 27
                 , p_0(30) -> 29
                 , p_0(32) -> 27
                 , p_0(32) -> 29
                 , p_0(32) -> 31
                 , p_1(36) -> 35
                 , p_1(37) -> 36
                 , p_1(38) -> 37
                 , p_1(39) -> 38
                 , p_1(40) -> 37
                 , p_1(41) -> 36
                 , p_1(42) -> 35
                 , p_1(46) -> 45
                 , p_1(48) -> 45
                 , p_1(48) -> 47
                 , p_1(50) -> 45
                 , p_1(50) -> 47
                 , p_1(50) -> 49
                 , p_1(52) -> 45
                 , p_1(52) -> 47
                 , p_1(52) -> 49
                 , p_1(52) -> 51
                 , s_0(4) -> 4
                 , s_0(4) -> 27
                 , s_0(4) -> 29
                 , s_0(4) -> 31
                 , s_0(4) -> 33
                 , s_0(4) -> 45
                 , s_0(4) -> 47
                 , s_0(4) -> 49
                 , s_0(4) -> 51
                 , s_0(22) -> 21
                 , s_0(23) -> 20
                 , s_0(23) -> 22
                 , s_0(24) -> 19
                 , s_0(24) -> 23
                 , s_0(25) -> 18
                 , s_0(25) -> 24
                 , s_0(26) -> 25
                 , s_0(29) -> 28
                 , s_0(31) -> 30
                 , s_0(33) -> 32
                 , s_1(4) -> 52
                 , s_1(35) -> 26
                 , s_1(35) -> 44
                 , s_1(40) -> 39
                 , s_1(41) -> 38
                 , s_1(41) -> 40
                 , s_1(42) -> 37
                 , s_1(42) -> 41
                 , s_1(43) -> 36
                 , s_1(43) -> 42
                 , s_1(44) -> 35
                 , s_1(44) -> 43
                 , s_1(47) -> 46
                 , s_1(49) -> 48
                 , s_1(51) -> 50
                 , twice_0(27) -> 26
                 , twice_1(45) -> 44
                 , p^#_0(4) -> 8
                 , p^#_0(18) -> 17
                 , p^#_0(24) -> 34
                 , p^#_1(36) -> 53
                 , p^#_1(42) -> 54
                 , twice^#_0(4) -> 10
                 , c_3_0(17) -> 10
                 , c_3_1(53) -> 10
                 , c_4_0(34) -> 17
                 , c_4_1(54) -> 53
                 , 0^#_0(4) -> 16
                 , c_7_0() -> 16}
      
   10)
      {  twice^#(s(x1)) ->
         c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
       , 0^#(x1) -> c_7()}
      
      The usable rules for this path are the following:
      {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
               , twice^#(s(x1)) ->
                 c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , 0^#(x1) -> c_7()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice^#(s(x1)) ->
             c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
            and weakly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [6]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            and weakly orienting the rules
            {  twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [5]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(x1) -> c_7()}
            and weakly orienting the rules
            {  p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(x1) -> c_7()}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [15]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [5]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [8]
                  0^#(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  0^#(x1) -> c_7()
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [7]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  0(x1) -> x1
             , 0^#(x1) -> c_7()
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [5]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [8]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [15]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , 0(x1) -> x1
                 , 0^#(x1) -> c_7()
                 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                 , twice^#(s(x1)) ->
                   c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , 0(x1) -> x1
                   , 0^#(x1) -> c_7()
                   , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                   , twice^#(s(x1)) ->
                     c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  p_0(4) -> 27
                 , p_0(4) -> 29
                 , p_0(4) -> 31
                 , p_0(4) -> 33
                 , p_0(19) -> 18
                 , p_0(20) -> 19
                 , p_0(21) -> 20
                 , p_0(22) -> 19
                 , p_0(23) -> 18
                 , p_0(28) -> 27
                 , p_0(30) -> 27
                 , p_0(30) -> 29
                 , p_0(32) -> 27
                 , p_0(32) -> 29
                 , p_0(32) -> 31
                 , p_1(35) -> 34
                 , p_1(36) -> 35
                 , p_1(37) -> 36
                 , p_1(38) -> 37
                 , p_1(39) -> 36
                 , p_1(40) -> 35
                 , p_1(41) -> 34
                 , p_1(45) -> 44
                 , p_1(47) -> 44
                 , p_1(47) -> 46
                 , p_1(49) -> 44
                 , p_1(49) -> 46
                 , p_1(49) -> 48
                 , p_1(51) -> 44
                 , p_1(51) -> 46
                 , p_1(51) -> 48
                 , p_1(51) -> 50
                 , s_0(4) -> 4
                 , s_0(4) -> 27
                 , s_0(4) -> 29
                 , s_0(4) -> 31
                 , s_0(4) -> 33
                 , s_0(4) -> 44
                 , s_0(4) -> 46
                 , s_0(4) -> 48
                 , s_0(4) -> 50
                 , s_0(22) -> 21
                 , s_0(23) -> 20
                 , s_0(23) -> 22
                 , s_0(24) -> 19
                 , s_0(24) -> 23
                 , s_0(25) -> 18
                 , s_0(25) -> 24
                 , s_0(26) -> 25
                 , s_0(29) -> 28
                 , s_0(31) -> 30
                 , s_0(33) -> 32
                 , s_1(4) -> 51
                 , s_1(34) -> 26
                 , s_1(34) -> 43
                 , s_1(39) -> 38
                 , s_1(40) -> 37
                 , s_1(40) -> 39
                 , s_1(41) -> 36
                 , s_1(41) -> 40
                 , s_1(42) -> 35
                 , s_1(42) -> 41
                 , s_1(43) -> 34
                 , s_1(43) -> 42
                 , s_1(46) -> 45
                 , s_1(48) -> 47
                 , s_1(50) -> 49
                 , twice_0(27) -> 26
                 , twice_1(44) -> 43
                 , p^#_0(4) -> 8
                 , p^#_0(18) -> 17
                 , p^#_1(35) -> 52
                 , twice^#_0(4) -> 10
                 , c_3_0(17) -> 10
                 , c_3_1(52) -> 10
                 , 0^#_0(4) -> 16
                 , c_7_0() -> 16}
      
   11)
      {  twice^#(s(x1)) ->
         c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
      
      The usable rules for this path are the following:
      {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , twice^#(s(x1)) ->
                 c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            and weakly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [8]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [2]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice^#(s(x1)) ->
             c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
            and weakly orienting the rules
            {  p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [3]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [8]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [8]
                  0^#(x1) = [1] x1 + [8]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  0(x1) -> x1
             , twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [2]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [8]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [15]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , 0(x1) -> x1
                 , twice^#(s(x1)) ->
                   c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                 , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , 0(x1) -> x1
                   , twice^#(s(x1)) ->
                     c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                   , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  p_0(4) -> 27
                 , p_0(4) -> 29
                 , p_0(4) -> 31
                 , p_0(4) -> 33
                 , p_0(19) -> 18
                 , p_0(20) -> 19
                 , p_0(21) -> 20
                 , p_0(22) -> 19
                 , p_0(23) -> 18
                 , p_0(28) -> 27
                 , p_0(30) -> 27
                 , p_0(30) -> 29
                 , p_0(32) -> 27
                 , p_0(32) -> 29
                 , p_0(32) -> 31
                 , p_1(35) -> 34
                 , p_1(36) -> 35
                 , p_1(37) -> 36
                 , p_1(38) -> 37
                 , p_1(39) -> 36
                 , p_1(40) -> 35
                 , p_1(41) -> 34
                 , p_1(45) -> 44
                 , p_1(47) -> 44
                 , p_1(47) -> 46
                 , p_1(49) -> 44
                 , p_1(49) -> 46
                 , p_1(49) -> 48
                 , p_1(51) -> 44
                 , p_1(51) -> 46
                 , p_1(51) -> 48
                 , p_1(51) -> 50
                 , s_0(4) -> 4
                 , s_0(4) -> 27
                 , s_0(4) -> 29
                 , s_0(4) -> 31
                 , s_0(4) -> 33
                 , s_0(4) -> 44
                 , s_0(4) -> 46
                 , s_0(4) -> 48
                 , s_0(4) -> 50
                 , s_0(22) -> 21
                 , s_0(23) -> 20
                 , s_0(23) -> 22
                 , s_0(24) -> 19
                 , s_0(24) -> 23
                 , s_0(25) -> 18
                 , s_0(25) -> 24
                 , s_0(26) -> 25
                 , s_0(29) -> 28
                 , s_0(31) -> 30
                 , s_0(33) -> 32
                 , s_1(4) -> 51
                 , s_1(34) -> 26
                 , s_1(34) -> 43
                 , s_1(39) -> 38
                 , s_1(40) -> 37
                 , s_1(40) -> 39
                 , s_1(41) -> 36
                 , s_1(41) -> 40
                 , s_1(42) -> 35
                 , s_1(42) -> 41
                 , s_1(43) -> 34
                 , s_1(43) -> 42
                 , s_1(46) -> 45
                 , s_1(48) -> 47
                 , s_1(50) -> 49
                 , twice_0(27) -> 26
                 , twice_1(44) -> 43
                 , p^#_0(4) -> 8
                 , p^#_0(18) -> 17
                 , p^#_1(35) -> 52
                 , twice^#_0(4) -> 10
                 , c_3_0(17) -> 10
                 , c_3_1(52) -> 10
                 , 0^#_0(4) -> 16}
      
   12)
      {  twice^#(s(x1)) ->
         c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p^#(s(x1)) -> c_5()}
      
      The usable rules for this path are the following:
      {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , twice^#(s(x1)) ->
                 c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p^#(s(x1)) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(s(x1)) -> c_5()}
            and weakly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(s(x1)) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice^#(s(x1)) ->
             c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
            and weakly orienting the rules
            {  p^#(s(x1)) -> c_5()
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , p^#(s(x1)) -> c_5()
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [3]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  0(x1) -> x1
             , twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , p^#(s(x1)) -> c_5()
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [14]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [4]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [13]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , 0(x1) -> x1
                 , twice^#(s(x1)) ->
                   c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p^#(s(x1)) -> c_5()
                 , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , 0(x1) -> x1
                   , twice^#(s(x1)) ->
                     c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p^#(s(x1)) -> c_5()
                   , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  p_0(4) -> 21
                 , p_0(4) -> 23
                 , p_0(4) -> 25
                 , p_0(4) -> 27
                 , p_0(13) -> 12
                 , p_0(14) -> 13
                 , p_0(15) -> 14
                 , p_0(16) -> 13
                 , p_0(17) -> 12
                 , p_0(22) -> 21
                 , p_0(24) -> 21
                 , p_0(24) -> 23
                 , p_0(26) -> 21
                 , p_0(26) -> 23
                 , p_0(26) -> 25
                 , p_1(29) -> 28
                 , p_1(30) -> 29
                 , p_1(31) -> 30
                 , p_1(32) -> 31
                 , p_1(33) -> 30
                 , p_1(34) -> 29
                 , p_1(35) -> 28
                 , p_1(39) -> 38
                 , p_1(41) -> 38
                 , p_1(41) -> 40
                 , p_1(43) -> 38
                 , p_1(43) -> 40
                 , p_1(43) -> 42
                 , p_1(45) -> 38
                 , p_1(45) -> 40
                 , p_1(45) -> 42
                 , p_1(45) -> 44
                 , s_0(4) -> 4
                 , s_0(4) -> 21
                 , s_0(4) -> 23
                 , s_0(4) -> 25
                 , s_0(4) -> 27
                 , s_0(4) -> 38
                 , s_0(4) -> 40
                 , s_0(4) -> 42
                 , s_0(4) -> 44
                 , s_0(16) -> 15
                 , s_0(17) -> 14
                 , s_0(17) -> 16
                 , s_0(18) -> 13
                 , s_0(18) -> 17
                 , s_0(19) -> 12
                 , s_0(19) -> 18
                 , s_0(20) -> 19
                 , s_0(23) -> 22
                 , s_0(25) -> 24
                 , s_0(27) -> 26
                 , s_1(4) -> 45
                 , s_1(28) -> 20
                 , s_1(28) -> 37
                 , s_1(33) -> 32
                 , s_1(34) -> 31
                 , s_1(34) -> 33
                 , s_1(35) -> 30
                 , s_1(35) -> 34
                 , s_1(36) -> 29
                 , s_1(36) -> 35
                 , s_1(37) -> 28
                 , s_1(37) -> 36
                 , s_1(40) -> 39
                 , s_1(42) -> 41
                 , s_1(44) -> 43
                 , twice_0(21) -> 20
                 , twice_1(38) -> 37
                 , p^#_0(4) -> 8
                 , p^#_0(12) -> 11
                 , p^#_1(29) -> 46
                 , twice^#_0(4) -> 10
                 , c_3_0(11) -> 10
                 , c_3_1(46) -> 10
                 , c_5_0() -> 8
                 , c_5_0() -> 11
                 , c_5_1() -> 46}
      
   13)
      {  twice^#(s(x1)) ->
         c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))
       , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
      
      The usable rules for this path are the following:
      {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , p^#(p(s(x1))) -> c_4(p^#(x1))
               , twice^#(s(x1)) ->
                 c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(x1) -> x1
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            and weakly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(x1) -> x1
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [2]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice^#(s(x1)) ->
             c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
            and weakly orienting the rules
            {  0(x1) -> x1
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , p^#(p(s(x1))) -> c_4(p^#(x1))}
            and weakly orienting the rules
            {  twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , 0(x1) -> x1
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p^#(p(s(x1))) -> c_4(p^#(x1))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [2]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [8]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [15]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p^#(p(s(x1))) -> c_4(p^#(x1))
                 , twice^#(s(x1)) ->
                   c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , 0(x1) -> x1
                 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                 , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p^#(p(s(x1))) -> c_4(p^#(x1))
                   , twice^#(s(x1)) ->
                     c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , 0(x1) -> x1
                   , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                   , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  p_0(4) -> 27
                 , p_0(4) -> 29
                 , p_0(4) -> 31
                 , p_0(4) -> 33
                 , p_0(19) -> 18
                 , p_0(20) -> 19
                 , p_0(21) -> 20
                 , p_0(22) -> 19
                 , p_0(23) -> 18
                 , p_0(28) -> 27
                 , p_0(30) -> 27
                 , p_0(30) -> 29
                 , p_0(32) -> 27
                 , p_0(32) -> 29
                 , p_0(32) -> 31
                 , p_1(36) -> 35
                 , p_1(37) -> 36
                 , p_1(38) -> 37
                 , p_1(39) -> 38
                 , p_1(40) -> 37
                 , p_1(41) -> 36
                 , p_1(42) -> 35
                 , p_1(46) -> 45
                 , p_1(48) -> 45
                 , p_1(48) -> 47
                 , p_1(50) -> 45
                 , p_1(50) -> 47
                 , p_1(50) -> 49
                 , p_1(52) -> 45
                 , p_1(52) -> 47
                 , p_1(52) -> 49
                 , p_1(52) -> 51
                 , s_0(4) -> 4
                 , s_0(4) -> 27
                 , s_0(4) -> 29
                 , s_0(4) -> 31
                 , s_0(4) -> 33
                 , s_0(4) -> 45
                 , s_0(4) -> 47
                 , s_0(4) -> 49
                 , s_0(4) -> 51
                 , s_0(22) -> 21
                 , s_0(23) -> 20
                 , s_0(23) -> 22
                 , s_0(24) -> 19
                 , s_0(24) -> 23
                 , s_0(25) -> 18
                 , s_0(25) -> 24
                 , s_0(26) -> 25
                 , s_0(29) -> 28
                 , s_0(31) -> 30
                 , s_0(33) -> 32
                 , s_1(4) -> 52
                 , s_1(35) -> 26
                 , s_1(35) -> 44
                 , s_1(40) -> 39
                 , s_1(41) -> 38
                 , s_1(41) -> 40
                 , s_1(42) -> 37
                 , s_1(42) -> 41
                 , s_1(43) -> 36
                 , s_1(43) -> 42
                 , s_1(44) -> 35
                 , s_1(44) -> 43
                 , s_1(47) -> 46
                 , s_1(49) -> 48
                 , s_1(51) -> 50
                 , twice_0(27) -> 26
                 , twice_1(45) -> 44
                 , p^#_0(4) -> 8
                 , p^#_0(18) -> 17
                 , p^#_0(24) -> 34
                 , p^#_1(36) -> 53
                 , p^#_1(42) -> 54
                 , twice^#_0(4) -> 10
                 , c_3_0(17) -> 10
                 , c_3_1(53) -> 10
                 , c_4_0(34) -> 17
                 , c_4_1(54) -> 53
                 , 0^#_0(4) -> 16}
      
   14)
      {  twice^#(s(x1)) ->
         c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))}
      
      The usable rules for this path are the following:
      {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , twice^#(s(x1)) ->
                 c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p^#(p(s(x1))) -> c_4(p^#(x1))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice^#(s(x1)) ->
             c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
            and weakly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [4]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [2]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [11]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  0(x1) -> x1
             , twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [2]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [4]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [13]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [8]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(p(s(x1))) -> c_4(p^#(x1))}
            and weakly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , 0(x1) -> x1
             , twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(p(s(x1))) -> c_4(p^#(x1))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [4]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [12]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p^#(p(s(x1))) -> c_4(p^#(x1))
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , 0(x1) -> x1
                 , twice^#(s(x1)) ->
                   c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p^#(p(s(x1))) -> c_4(p^#(x1))
                   , p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , 0(x1) -> x1
                   , twice^#(s(x1)) ->
                     c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  p_0(4) -> 21
                 , p_0(4) -> 23
                 , p_0(4) -> 25
                 , p_0(4) -> 27
                 , p_0(13) -> 12
                 , p_0(14) -> 13
                 , p_0(15) -> 14
                 , p_0(16) -> 13
                 , p_0(17) -> 12
                 , p_0(22) -> 21
                 , p_0(24) -> 21
                 , p_0(24) -> 23
                 , p_0(26) -> 21
                 , p_0(26) -> 23
                 , p_0(26) -> 25
                 , p_1(30) -> 29
                 , p_1(31) -> 30
                 , p_1(32) -> 31
                 , p_1(33) -> 32
                 , p_1(34) -> 31
                 , p_1(35) -> 30
                 , p_1(36) -> 29
                 , p_1(40) -> 39
                 , p_1(42) -> 39
                 , p_1(42) -> 41
                 , p_1(44) -> 39
                 , p_1(44) -> 41
                 , p_1(44) -> 43
                 , p_1(46) -> 39
                 , p_1(46) -> 41
                 , p_1(46) -> 43
                 , p_1(46) -> 45
                 , s_0(4) -> 4
                 , s_0(4) -> 21
                 , s_0(4) -> 23
                 , s_0(4) -> 25
                 , s_0(4) -> 27
                 , s_0(4) -> 39
                 , s_0(4) -> 41
                 , s_0(4) -> 43
                 , s_0(4) -> 45
                 , s_0(16) -> 15
                 , s_0(17) -> 14
                 , s_0(17) -> 16
                 , s_0(18) -> 13
                 , s_0(18) -> 17
                 , s_0(19) -> 12
                 , s_0(19) -> 18
                 , s_0(20) -> 19
                 , s_0(23) -> 22
                 , s_0(25) -> 24
                 , s_0(27) -> 26
                 , s_1(4) -> 46
                 , s_1(29) -> 20
                 , s_1(29) -> 38
                 , s_1(34) -> 33
                 , s_1(35) -> 32
                 , s_1(35) -> 34
                 , s_1(36) -> 31
                 , s_1(36) -> 35
                 , s_1(37) -> 30
                 , s_1(37) -> 36
                 , s_1(38) -> 29
                 , s_1(38) -> 37
                 , s_1(41) -> 40
                 , s_1(43) -> 42
                 , s_1(45) -> 44
                 , twice_0(21) -> 20
                 , twice_1(39) -> 38
                 , p^#_0(4) -> 8
                 , p^#_0(12) -> 11
                 , p^#_0(18) -> 28
                 , p^#_1(30) -> 47
                 , p^#_1(36) -> 48
                 , twice^#_0(4) -> 10
                 , c_3_0(11) -> 10
                 , c_3_1(47) -> 10
                 , c_4_0(28) -> 11
                 , c_4_1(48) -> 47}
      
   15)
      {  twice^#(s(x1)) ->
         c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))
       , p^#(s(x1)) -> c_5()}
      
      The usable rules for this path are the following:
      {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , p^#(p(s(x1))) -> c_4(p^#(x1))
               , twice^#(s(x1)) ->
                 c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p^#(s(x1)) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
             , p^#(s(x1)) -> c_5()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , p^#(s(x1)) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice^#(s(x1)) ->
             c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
            and weakly orienting the rules
            {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
             , p^#(s(x1)) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [6]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
             , p^#(s(x1)) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [4]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [4]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , p^#(p(s(x1))) -> c_4(p^#(x1))}
            and weakly orienting the rules
            {  0(x1) -> x1
             , twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
             , p^#(s(x1)) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p^#(p(s(x1))) -> c_4(p^#(x1))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [8]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [15]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p^#(p(s(x1))) -> c_4(p^#(x1))
                 , 0(x1) -> x1
                 , twice^#(s(x1)) ->
                   c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                 , p^#(s(x1)) -> c_5()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p^#(p(s(x1))) -> c_4(p^#(x1))
                   , 0(x1) -> x1
                   , twice^#(s(x1)) ->
                     c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
                   , p^#(s(x1)) -> c_5()}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  p_0(4) -> 21
                 , p_0(4) -> 23
                 , p_0(4) -> 25
                 , p_0(4) -> 27
                 , p_0(13) -> 12
                 , p_0(14) -> 13
                 , p_0(15) -> 14
                 , p_0(16) -> 13
                 , p_0(17) -> 12
                 , p_0(22) -> 21
                 , p_0(24) -> 21
                 , p_0(24) -> 23
                 , p_0(26) -> 21
                 , p_0(26) -> 23
                 , p_0(26) -> 25
                 , p_1(30) -> 29
                 , p_1(31) -> 30
                 , p_1(32) -> 31
                 , p_1(33) -> 32
                 , p_1(34) -> 31
                 , p_1(35) -> 30
                 , p_1(36) -> 29
                 , p_1(40) -> 39
                 , p_1(42) -> 39
                 , p_1(42) -> 41
                 , p_1(44) -> 39
                 , p_1(44) -> 41
                 , p_1(44) -> 43
                 , p_1(46) -> 39
                 , p_1(46) -> 41
                 , p_1(46) -> 43
                 , p_1(46) -> 45
                 , s_0(4) -> 4
                 , s_0(4) -> 21
                 , s_0(4) -> 23
                 , s_0(4) -> 25
                 , s_0(4) -> 27
                 , s_0(4) -> 39
                 , s_0(4) -> 41
                 , s_0(4) -> 43
                 , s_0(4) -> 45
                 , s_0(16) -> 15
                 , s_0(17) -> 14
                 , s_0(17) -> 16
                 , s_0(18) -> 13
                 , s_0(18) -> 17
                 , s_0(19) -> 12
                 , s_0(19) -> 18
                 , s_0(20) -> 19
                 , s_0(23) -> 22
                 , s_0(25) -> 24
                 , s_0(27) -> 26
                 , s_1(4) -> 46
                 , s_1(29) -> 20
                 , s_1(29) -> 38
                 , s_1(34) -> 33
                 , s_1(35) -> 32
                 , s_1(35) -> 34
                 , s_1(36) -> 31
                 , s_1(36) -> 35
                 , s_1(37) -> 30
                 , s_1(37) -> 36
                 , s_1(38) -> 29
                 , s_1(38) -> 37
                 , s_1(41) -> 40
                 , s_1(43) -> 42
                 , s_1(45) -> 44
                 , twice_0(21) -> 20
                 , twice_1(39) -> 38
                 , p^#_0(4) -> 8
                 , p^#_0(12) -> 11
                 , p^#_0(18) -> 28
                 , p^#_1(30) -> 47
                 , p^#_1(36) -> 48
                 , twice^#_0(4) -> 10
                 , c_3_0(11) -> 10
                 , c_3_1(47) -> 10
                 , c_4_0(28) -> 11
                 , c_4_1(48) -> 47
                 , c_5_0() -> 8
                 , c_5_0() -> 11
                 , c_5_0() -> 28
                 , c_5_1() -> 47
                 , c_5_1() -> 48}
      
   16)
      {twice^#(s(x1)) ->
       c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
      
      The usable rules for this path are the following:
      {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
       , twice(s(x1)) ->
         s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))
               , twice(s(x1)) ->
                 s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , twice^#(s(x1)) ->
                 c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twice^#(s(x1)) ->
             c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
            and weakly orienting the rules
            {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [1]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  0(x1) -> x1
             , twice^#(s(x1)) ->
               c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
             , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [1] x1 + [4]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [11]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  twice(s(x1)) ->
                   s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , 0(x1) -> x1
                 , twice^#(s(x1)) ->
                   c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                 , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  twice(s(x1)) ->
                     s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , 0(x1) -> x1
                   , twice^#(s(x1)) ->
                     c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))
                   , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  p_0(4) -> 21
                 , p_0(4) -> 23
                 , p_0(4) -> 25
                 , p_0(4) -> 27
                 , p_0(13) -> 12
                 , p_0(14) -> 13
                 , p_0(15) -> 14
                 , p_0(16) -> 13
                 , p_0(17) -> 12
                 , p_0(22) -> 21
                 , p_0(24) -> 21
                 , p_0(24) -> 23
                 , p_0(26) -> 21
                 , p_0(26) -> 23
                 , p_0(26) -> 25
                 , p_1(29) -> 28
                 , p_1(30) -> 29
                 , p_1(31) -> 30
                 , p_1(32) -> 31
                 , p_1(33) -> 30
                 , p_1(34) -> 29
                 , p_1(35) -> 28
                 , p_1(39) -> 38
                 , p_1(41) -> 38
                 , p_1(41) -> 40
                 , p_1(43) -> 38
                 , p_1(43) -> 40
                 , p_1(43) -> 42
                 , p_1(45) -> 38
                 , p_1(45) -> 40
                 , p_1(45) -> 42
                 , p_1(45) -> 44
                 , s_0(4) -> 4
                 , s_0(4) -> 21
                 , s_0(4) -> 23
                 , s_0(4) -> 25
                 , s_0(4) -> 27
                 , s_0(4) -> 38
                 , s_0(4) -> 40
                 , s_0(4) -> 42
                 , s_0(4) -> 44
                 , s_0(16) -> 15
                 , s_0(17) -> 14
                 , s_0(17) -> 16
                 , s_0(18) -> 13
                 , s_0(18) -> 17
                 , s_0(19) -> 12
                 , s_0(19) -> 18
                 , s_0(20) -> 19
                 , s_0(23) -> 22
                 , s_0(25) -> 24
                 , s_0(27) -> 26
                 , s_1(4) -> 45
                 , s_1(28) -> 20
                 , s_1(28) -> 37
                 , s_1(33) -> 32
                 , s_1(34) -> 31
                 , s_1(34) -> 33
                 , s_1(35) -> 30
                 , s_1(35) -> 34
                 , s_1(36) -> 29
                 , s_1(36) -> 35
                 , s_1(37) -> 28
                 , s_1(37) -> 36
                 , s_1(40) -> 39
                 , s_1(42) -> 41
                 , s_1(44) -> 43
                 , twice_0(21) -> 20
                 , twice_1(38) -> 37
                 , p^#_0(4) -> 8
                 , p^#_0(12) -> 11
                 , p^#_1(29) -> 46
                 , twice^#_0(4) -> 10
                 , c_3_0(11) -> 10
                 , c_3_1(46) -> 10}
      
   17)
      {  twoto^#(0(x1)) ->
         c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))
       , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
       , 0^#(x1) -> c_7()}
      
      The usable rules for this path are the following:
      {  p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
               , p^#(p(s(x1))) -> c_4(p^#(x1))
               , twoto^#(0(x1)) ->
                 c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
               , 0^#(x1) -> c_7()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(0(x1)) ->
             c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [7]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            and weakly orienting the rules
            {twoto^#(0(x1)) ->
             c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [7]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(x1) -> c_7()}
            and weakly orienting the rules
            {  p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(x1) -> c_7()}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  0^#(x1) -> c_7()
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , p^#(p(s(x1))) -> c_4(p^#(x1))}
            and weakly orienting the rules
            {  0(x1) -> x1
             , 0^#(x1) -> c_7()
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p^#(p(s(x1))) -> c_4(p^#(x1))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [13]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [3]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p^#(p(s(x1))) -> c_4(p^#(x1))
                 , 0(x1) -> x1
                 , 0^#(x1) -> c_7()
                 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                 , twoto^#(0(x1)) ->
                   c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p^#(p(s(x1))) -> c_4(p^#(x1))
                   , 0(x1) -> x1
                   , 0^#(x1) -> c_7()
                   , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                   , twoto^#(0(x1)) ->
                     c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  s_0(4) -> 4
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8
                 , 0^#_0(4) -> 16
                 , c_7_0() -> 16}
      
   18)
      {  twoto^#(0(x1)) ->
         c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
       , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
       , 0^#(x1) -> c_7()}
      
      The usable rules for this path are the following:
      {  p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
               , twoto^#(0(x1)) ->
                 c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
               , 0^#(x1) -> c_7()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(0(x1)) ->
             c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [7]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            and weakly orienting the rules
            {twoto^#(0(x1)) ->
             c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(x1) -> c_7()}
            and weakly orienting the rules
            {  p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(x1) -> c_7()}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  0^#(x1) -> c_7()
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  0(x1) -> x1
             , 0^#(x1) -> c_7()
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [12]
                  c_0(x1) = [1] x1 + [4]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , 0(x1) -> x1
                 , 0^#(x1) -> c_7()
                 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                 , twoto^#(0(x1)) ->
                   c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , 0(x1) -> x1
                   , 0^#(x1) -> c_7()
                   , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                   , twoto^#(0(x1)) ->
                     c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  s_0(4) -> 4
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8
                 , 0^#_0(4) -> 16
                 , c_7_0() -> 16}
      
   19)
      {  twoto^#(0(x1)) ->
         c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))
       , p^#(s(x1)) -> c_5()}
      
      The usable rules for this path are the following:
      {  p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , p^#(p(s(x1))) -> c_4(p^#(x1))
               , twoto^#(0(x1)) ->
                 c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
               , p^#(s(x1)) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {p^#(s(x1)) -> c_5()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(s(x1)) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(0(x1)) ->
             c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            and weakly orienting the rules
            {p^#(s(x1)) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [7]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
             , p^#(s(x1)) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [2]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [7]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  0(x1) -> x1
             , twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
             , p^#(s(x1)) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [1]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [12]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(p(s(x1))) -> c_4(p^#(x1))}
            and weakly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , 0(x1) -> x1
             , twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
             , p^#(s(x1)) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(p(s(x1))) -> c_4(p^#(x1))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [3]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p^#(p(s(x1))) -> c_4(p^#(x1))
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , 0(x1) -> x1
                 , twoto^#(0(x1)) ->
                   c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
                 , p^#(s(x1)) -> c_5()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p^#(p(s(x1))) -> c_4(p^#(x1))
                   , p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , 0(x1) -> x1
                   , twoto^#(0(x1)) ->
                     c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
                   , p^#(s(x1)) -> c_5()}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  s_0(4) -> 4
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8
                 , c_5_0() -> 8}
      
   20)
      {  twoto^#(0(x1)) ->
         c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
       , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
      
      The usable rules for this path are the following:
      {  p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , twoto^#(0(x1)) ->
                 c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(0(x1)) ->
             c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            and weakly orienting the rules
            {twoto^#(0(x1)) ->
             c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  0(x1) -> x1
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
             , twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , 0(x1) -> x1
                 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                 , twoto^#(0(x1)) ->
                   c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , 0(x1) -> x1
                   , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))
                   , twoto^#(0(x1)) ->
                     c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  s_0(4) -> 4
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8
                 , 0^#_0(4) -> 16}
      
   21)
      {  twoto^#(0(x1)) ->
         c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))
       , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
      
      The usable rules for this path are the following:
      {  p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , p^#(p(s(x1))) -> c_4(p^#(x1))
               , twoto^#(0(x1)) ->
                 c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  0(x1) -> x1
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(x1) -> x1
               , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(0(x1)) ->
             c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            and weakly orienting the rules
            {  0(x1) -> x1
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [1]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , p^#(p(s(x1))) -> c_4(p^#(x1))}
            and weakly orienting the rules
            {  twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
             , 0(x1) -> x1
             , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p^#(p(s(x1))) -> c_4(p^#(x1))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [1]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [15]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [7]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p^#(p(s(x1))) -> c_4(p^#(x1))
                 , twoto^#(0(x1)) ->
                   c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
                 , 0(x1) -> x1
                 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p^#(p(s(x1))) -> c_4(p^#(x1))
                   , twoto^#(0(x1)) ->
                     c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
                   , 0(x1) -> x1
                   , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  s_0(4) -> 4
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8
                 , 0^#_0(4) -> 16}
      
   22)
      {  twoto^#(0(x1)) ->
         c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
       , p^#(s(x1)) -> c_5()}
      
      The usable rules for this path are the following:
      {  p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , twoto^#(0(x1)) ->
                 c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
               , p^#(s(x1)) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(0(x1)) ->
             c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(s(x1)) -> c_5()}
            and weakly orienting the rules
            {twoto^#(0(x1)) ->
             c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(s(x1)) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  p^#(s(x1)) -> c_5()
             , twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  0(x1) -> x1
             , p^#(s(x1)) -> c_5()
             , twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [2]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [13]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , 0(x1) -> x1
                 , p^#(s(x1)) -> c_5()
                 , twoto^#(0(x1)) ->
                   c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , 0(x1) -> x1
                   , p^#(s(x1)) -> c_5()
                   , twoto^#(0(x1)) ->
                     c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  s_0(4) -> 4
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8
                 , c_5_0() -> 8}
      
   23)
      {  twice^#(0(x1)) ->
         c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))
       , p^#(s(x1)) -> c_5()}
      
      The usable rules for this path are the following:
      {  p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , twice^#(0(x1)) ->
                 c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))
               , p^#(s(x1)) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twice^#(0(x1)) ->
             c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice^#(0(x1)) ->
               c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(s(x1)) -> c_5()}
            and weakly orienting the rules
            {twice^#(0(x1)) ->
             c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(s(x1)) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [3]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {  p^#(s(x1)) -> c_5()
             , twice^#(0(x1)) ->
               c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  0(x1) -> x1
             , p^#(s(x1)) -> c_5()
             , twice^#(0(x1)) ->
               c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [4]
                  p(x1) = [1] x1 + [4]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [13]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , 0(x1) -> x1
                 , p^#(s(x1)) -> c_5()
                 , twice^#(0(x1)) ->
                   c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , 0(x1) -> x1
                   , p^#(s(x1)) -> c_5()
                   , twice^#(0(x1)) ->
                     c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  s_0(4) -> 4
                 , p^#_0(4) -> 8
                 , twice^#_0(4) -> 10
                 , c_5_0() -> 8}
      
   24)
      {  twoto^#(0(x1)) ->
         c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))}
      
      The usable rules for this path are the following:
      {  p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , twoto^#(0(x1)) ->
                 c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))
               , p^#(p(s(x1))) -> c_4(p^#(x1))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(0(x1)) ->
             c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {twoto^#(0(x1)) ->
             c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , p^#(p(s(x1))) -> c_4(p^#(x1))}
            and weakly orienting the rules
            {  0(x1) -> x1
             , twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p^#(p(s(x1))) -> c_4(p^#(x1))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [12]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [1]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [15]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [7]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p^#(p(s(x1))) -> c_4(p^#(x1))
                 , 0(x1) -> x1
                 , twoto^#(0(x1)) ->
                   c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p^#(p(s(x1))) -> c_4(p^#(x1))
                   , 0(x1) -> x1
                   , twoto^#(0(x1)) ->
                     c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  s_0(4) -> 4
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8}
      
   25)
      {twoto^#(0(x1)) ->
       c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
      
      The usable rules for this path are the following:
      {  p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , twoto^#(0(x1)) ->
                 c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twoto^#(0(x1)) ->
             c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {twoto^#(0(x1)) ->
             c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  0(x1) -> x1
             , twoto^#(0(x1)) ->
               c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [2]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [1]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [1] x1 + [15]
                  c_0(x1) = [1] x1 + [1]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , 0(x1) -> x1
                 , twoto^#(0(x1)) ->
                   c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , 0(x1) -> x1
                   , twoto^#(0(x1)) ->
                     c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  s_0(4) -> 4
                 , twoto^#_0(4) -> 6
                 , p^#_0(4) -> 8}
      
   26)
      {twice^#(0(x1)) ->
       c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
      
      The usable rules for this path are the following:
      {  p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
       , 0(x1) -> x1}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))
               , 0(x1) -> x1
               , twice^#(0(x1)) ->
                 c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {twice^#(0(x1)) ->
             c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {twice^#(0(x1)) ->
               c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(x1) -> x1}
            and weakly orienting the rules
            {twice^#(0(x1)) ->
             c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  0(x1) -> x1
             , twice^#(0(x1)) ->
               c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  twoto(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [12]
                  p(x1) = [1] x1 + [2]
                  s(x1) = [1] x1 + [0]
                  twice(x1) = [0] x1 + [0]
                  twoto^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [6]
                  c_1(x1) = [0] x1 + [0]
                  twice^#(x1) = [1] x1 + [13]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , 0(x1) -> x1
                 , twice^#(0(x1)) ->
                   c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , 0(x1) -> x1
                   , twice^#(0(x1)) ->
                     c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  s_0(4) -> 4
                 , p^#_0(4) -> 8
                 , twice^#_0(4) -> 10}