'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} Details: We have computed the following set of weak (innermost) dependency pairs: { twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1)) , p^#(s(x1)) -> c_5() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , 0^#(x1) -> c_7()} The usable rules are: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} The estimated dependency graph contains the following edges: {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} ==> {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} ==> {p^#(p(s(x1))) -> c_4(p^#(x1))} {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} ==> {p^#(s(x1)) -> c_5()} {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} ==> {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} ==> {p^#(p(s(x1))) -> c_4(p^#(x1))} {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} ==> {p^#(s(x1)) -> c_5()} {twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} ==> {p^#(s(x1)) -> c_5()} {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} ==> {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} ==> {p^#(p(s(x1))) -> c_4(p^#(x1))} {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} ==> {p^#(s(x1)) -> c_5()} {p^#(p(s(x1))) -> c_4(p^#(x1))} ==> {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} {p^#(p(s(x1))) -> c_4(p^#(x1))} ==> {p^#(s(x1)) -> c_5()} {p^#(p(s(x1))) -> c_4(p^#(x1))} ==> {p^#(p(s(x1))) -> c_4(p^#(x1))} {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} ==> {0^#(x1) -> c_7()} We consider the following path(s): 1) { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1)) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , 0^#(x1) -> c_7()} The usable rules for this path are the following: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , p^#(p(s(x1))) -> c_4(p^#(x1)) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , 0^#(x1) -> c_7()} Details: We apply the weight gap principle, strictly orienting the rules {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} and weakly orienting the rules {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} and weakly orienting the rules { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(x1) -> c_7()} and weakly orienting the rules { p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(x1) -> c_7()} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [8] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules { 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [8] twoto^#(x1) = [1] x1 + [13] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [2] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , p^#(p(s(x1))) -> c_4(p^#(x1))} Weak Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , p^#(p(s(x1))) -> c_4(p^#(x1))} Weak Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { twoto_1(39) -> 28 , twoto_1(39) -> 32 , twoto_1(39) -> 38 , p_1(18) -> 28 , p_1(18) -> 32 , p_1(18) -> 38 , p_1(19) -> 18 , p_1(22) -> 21 , p_1(22) -> 28 , p_1(22) -> 32 , p_1(22) -> 38 , p_1(23) -> 22 , p_1(24) -> 23 , p_1(29) -> 28 , p_1(30) -> 29 , p_1(33) -> 28 , p_1(33) -> 32 , p_1(34) -> 33 , p_1(35) -> 34 , p_1(40) -> 39 , p_1(42) -> 39 , p_1(42) -> 41 , p_2(20) -> 28 , p_2(20) -> 32 , p_2(20) -> 38 , p_2(25) -> 22 , p_2(26) -> 21 , p_2(26) -> 28 , p_2(26) -> 32 , p_2(26) -> 38 , p_2(31) -> 28 , p_2(36) -> 33 , p_2(37) -> 28 , p_2(37) -> 32 , s_0(4) -> 4 , s_0(4) -> 39 , s_0(4) -> 41 , s_1(4) -> 42 , s_1(20) -> 19 , s_1(21) -> 18 , s_1(21) -> 20 , s_1(25) -> 24 , s_1(26) -> 23 , s_1(26) -> 25 , s_1(27) -> 22 , s_1(27) -> 26 , s_1(31) -> 30 , s_1(32) -> 29 , s_1(32) -> 31 , s_1(36) -> 35 , s_1(37) -> 34 , s_1(37) -> 36 , s_1(38) -> 33 , s_1(38) -> 37 , s_1(41) -> 40 , twice_1(28) -> 21 , twice_1(28) -> 27 , twice_1(28) -> 28 , twice_1(28) -> 32 , twice_1(28) -> 38 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8 , p^#_1(18) -> 17 , p^#_2(20) -> 43 , c_1_1(17) -> 6 , c_4_2(43) -> 17 , 0^#_0(4) -> 16 , c_7_0() -> 16} 2) { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} The usable rules for this path are the following: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: We apply the weight gap principle, strictly orienting the rules {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [4] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} and weakly orienting the rules { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [15] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [9] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} and weakly orienting the rules { p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [2] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [10] twoto^#(x1) = [1] x1 + [13] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [2] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { 0(x1) -> x1 , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { 0(x1) -> x1 , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { twoto_1(39) -> 28 , twoto_1(39) -> 32 , twoto_1(39) -> 38 , p_1(18) -> 28 , p_1(18) -> 32 , p_1(18) -> 38 , p_1(19) -> 18 , p_1(22) -> 21 , p_1(22) -> 28 , p_1(22) -> 32 , p_1(22) -> 38 , p_1(23) -> 22 , p_1(24) -> 23 , p_1(29) -> 28 , p_1(30) -> 29 , p_1(33) -> 28 , p_1(33) -> 32 , p_1(34) -> 33 , p_1(35) -> 34 , p_1(40) -> 39 , p_1(42) -> 39 , p_1(42) -> 41 , p_2(20) -> 28 , p_2(20) -> 32 , p_2(20) -> 38 , p_2(25) -> 22 , p_2(26) -> 21 , p_2(26) -> 28 , p_2(26) -> 32 , p_2(26) -> 38 , p_2(31) -> 28 , p_2(36) -> 33 , p_2(37) -> 28 , p_2(37) -> 32 , s_0(4) -> 4 , s_0(4) -> 39 , s_0(4) -> 41 , s_1(4) -> 42 , s_1(20) -> 19 , s_1(21) -> 18 , s_1(21) -> 20 , s_1(25) -> 24 , s_1(26) -> 23 , s_1(26) -> 25 , s_1(27) -> 22 , s_1(27) -> 26 , s_1(31) -> 30 , s_1(32) -> 29 , s_1(32) -> 31 , s_1(36) -> 35 , s_1(37) -> 34 , s_1(37) -> 36 , s_1(38) -> 33 , s_1(38) -> 37 , s_1(41) -> 40 , twice_1(28) -> 21 , twice_1(28) -> 27 , twice_1(28) -> 28 , twice_1(28) -> 32 , twice_1(28) -> 38 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8 , p^#_1(18) -> 17 , c_1_1(17) -> 6 , 0^#_0(4) -> 16} 3) { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , 0^#(x1) -> c_7()} The usable rules for this path are the following: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , 0^#(x1) -> c_7()} Details: We apply the weight gap principle, strictly orienting the rules {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} and weakly orienting the rules {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [4] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} and weakly orienting the rules { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [4] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(x1) -> c_7()} and weakly orienting the rules { 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(x1) -> c_7()} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [15] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [8] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { 0^#(x1) -> c_7() , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { 0^#(x1) -> c_7() , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { twoto_1(39) -> 28 , twoto_1(39) -> 32 , twoto_1(39) -> 38 , p_1(18) -> 28 , p_1(18) -> 32 , p_1(18) -> 38 , p_1(19) -> 18 , p_1(22) -> 21 , p_1(22) -> 28 , p_1(22) -> 32 , p_1(22) -> 38 , p_1(23) -> 22 , p_1(24) -> 23 , p_1(29) -> 28 , p_1(30) -> 29 , p_1(33) -> 28 , p_1(33) -> 32 , p_1(34) -> 33 , p_1(35) -> 34 , p_1(40) -> 39 , p_1(42) -> 39 , p_1(42) -> 41 , p_2(20) -> 28 , p_2(20) -> 32 , p_2(20) -> 38 , p_2(25) -> 22 , p_2(26) -> 21 , p_2(26) -> 28 , p_2(26) -> 32 , p_2(26) -> 38 , p_2(31) -> 28 , p_2(36) -> 33 , p_2(37) -> 28 , p_2(37) -> 32 , s_0(4) -> 4 , s_0(4) -> 39 , s_0(4) -> 41 , s_1(4) -> 42 , s_1(20) -> 19 , s_1(21) -> 18 , s_1(21) -> 20 , s_1(25) -> 24 , s_1(26) -> 23 , s_1(26) -> 25 , s_1(27) -> 22 , s_1(27) -> 26 , s_1(31) -> 30 , s_1(32) -> 29 , s_1(32) -> 31 , s_1(36) -> 35 , s_1(37) -> 34 , s_1(37) -> 36 , s_1(38) -> 33 , s_1(38) -> 37 , s_1(41) -> 40 , twice_1(28) -> 21 , twice_1(28) -> 27 , twice_1(28) -> 28 , twice_1(28) -> 32 , twice_1(28) -> 38 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8 , p^#_1(18) -> 17 , c_1_1(17) -> 6 , 0^#_0(4) -> 16 , c_7_0() -> 16} 4) { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(s(x1)) -> c_5()} The usable rules for this path are the following: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(s(x1)) -> c_5()} Details: We apply the weight gap principle, strictly orienting the rules {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(s(x1)) -> c_5()} and weakly orienting the rules {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(s(x1)) -> c_5()} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { p^#(s(x1)) -> c_5() , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} and weakly orienting the rules { 0(x1) -> x1 , p^#(s(x1)) -> c_5() , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , 0(x1) -> x1 , p^#(s(x1)) -> c_5() , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [4] twoto^#(x1) = [1] x1 + [13] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [8] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , 0(x1) -> x1 , p^#(s(x1)) -> c_5() , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , 0(x1) -> x1 , p^#(s(x1)) -> c_5() , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { twoto_1(31) -> 20 , twoto_1(31) -> 24 , twoto_1(31) -> 30 , p_1(10) -> 20 , p_1(10) -> 24 , p_1(10) -> 30 , p_1(11) -> 10 , p_1(14) -> 13 , p_1(14) -> 20 , p_1(14) -> 24 , p_1(14) -> 30 , p_1(15) -> 14 , p_1(16) -> 15 , p_1(21) -> 20 , p_1(22) -> 21 , p_1(25) -> 20 , p_1(25) -> 24 , p_1(26) -> 25 , p_1(27) -> 26 , p_1(32) -> 31 , p_1(34) -> 31 , p_1(34) -> 33 , p_2(12) -> 20 , p_2(12) -> 24 , p_2(12) -> 30 , p_2(17) -> 14 , p_2(18) -> 13 , p_2(18) -> 20 , p_2(18) -> 24 , p_2(18) -> 30 , p_2(23) -> 20 , p_2(28) -> 25 , p_2(29) -> 20 , p_2(29) -> 24 , s_0(4) -> 4 , s_0(4) -> 31 , s_0(4) -> 33 , s_1(4) -> 34 , s_1(12) -> 11 , s_1(13) -> 10 , s_1(13) -> 12 , s_1(17) -> 16 , s_1(18) -> 15 , s_1(18) -> 17 , s_1(19) -> 14 , s_1(19) -> 18 , s_1(23) -> 22 , s_1(24) -> 21 , s_1(24) -> 23 , s_1(28) -> 27 , s_1(29) -> 26 , s_1(29) -> 28 , s_1(30) -> 25 , s_1(30) -> 29 , s_1(33) -> 32 , twice_1(20) -> 13 , twice_1(20) -> 19 , twice_1(20) -> 20 , twice_1(20) -> 24 , twice_1(20) -> 30 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8 , p^#_1(10) -> 9 , c_1_1(9) -> 6 , c_5_0() -> 8 , c_5_1() -> 9} 5) { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1)) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} The usable rules for this path are the following: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: We apply the weight gap principle, strictly orienting the rules {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} and weakly orienting the rules {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [8] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} and weakly orienting the rules { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [15] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules { 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [8] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [2] twoto^#(x1) = [1] x1 + [13] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [4] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , p^#(p(s(x1))) -> c_4(p^#(x1))} Weak Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , p^#(p(s(x1))) -> c_4(p^#(x1))} Weak Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { twoto_1(39) -> 28 , twoto_1(39) -> 32 , twoto_1(39) -> 38 , p_1(18) -> 28 , p_1(18) -> 32 , p_1(18) -> 38 , p_1(19) -> 18 , p_1(22) -> 21 , p_1(22) -> 28 , p_1(22) -> 32 , p_1(22) -> 38 , p_1(23) -> 22 , p_1(24) -> 23 , p_1(29) -> 28 , p_1(30) -> 29 , p_1(33) -> 28 , p_1(33) -> 32 , p_1(34) -> 33 , p_1(35) -> 34 , p_1(40) -> 39 , p_1(42) -> 39 , p_1(42) -> 41 , p_2(20) -> 28 , p_2(20) -> 32 , p_2(20) -> 38 , p_2(25) -> 22 , p_2(26) -> 21 , p_2(26) -> 28 , p_2(26) -> 32 , p_2(26) -> 38 , p_2(31) -> 28 , p_2(36) -> 33 , p_2(37) -> 28 , p_2(37) -> 32 , s_0(4) -> 4 , s_0(4) -> 39 , s_0(4) -> 41 , s_1(4) -> 42 , s_1(20) -> 19 , s_1(21) -> 18 , s_1(21) -> 20 , s_1(25) -> 24 , s_1(26) -> 23 , s_1(26) -> 25 , s_1(27) -> 22 , s_1(27) -> 26 , s_1(31) -> 30 , s_1(32) -> 29 , s_1(32) -> 31 , s_1(36) -> 35 , s_1(37) -> 34 , s_1(37) -> 36 , s_1(38) -> 33 , s_1(38) -> 37 , s_1(41) -> 40 , twice_1(28) -> 21 , twice_1(28) -> 27 , twice_1(28) -> 28 , twice_1(28) -> 32 , twice_1(28) -> 38 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8 , p^#_1(18) -> 17 , p^#_2(20) -> 43 , c_1_1(17) -> 6 , c_4_2(43) -> 17 , 0^#_0(4) -> 16} 6) { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1)) , p^#(s(x1)) -> c_5()} The usable rules for this path are the following: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(s(x1)) -> c_5()} Details: We apply the weight gap principle, strictly orienting the rules { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , p^#(s(x1)) -> c_5()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , p^#(s(x1)) -> c_5()} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} and weakly orienting the rules { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , p^#(s(x1)) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , p^#(s(x1)) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [2] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [3] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [5] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules { 0(x1) -> x1 , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , p^#(s(x1)) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [8] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , p^#(p(s(x1))) -> c_4(p^#(x1))} Weak Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , 0(x1) -> x1 , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , p^#(s(x1)) -> c_5()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , p^#(p(s(x1))) -> c_4(p^#(x1))} Weak Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , 0(x1) -> x1 , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , p^#(s(x1)) -> c_5()} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { twoto_1(31) -> 20 , twoto_1(31) -> 24 , twoto_1(31) -> 30 , p_1(10) -> 20 , p_1(10) -> 24 , p_1(10) -> 30 , p_1(11) -> 10 , p_1(14) -> 13 , p_1(14) -> 20 , p_1(14) -> 24 , p_1(14) -> 30 , p_1(15) -> 14 , p_1(16) -> 15 , p_1(21) -> 20 , p_1(22) -> 21 , p_1(25) -> 20 , p_1(25) -> 24 , p_1(26) -> 25 , p_1(27) -> 26 , p_1(32) -> 31 , p_1(34) -> 31 , p_1(34) -> 33 , p_2(12) -> 20 , p_2(12) -> 24 , p_2(12) -> 30 , p_2(17) -> 14 , p_2(18) -> 13 , p_2(18) -> 20 , p_2(18) -> 24 , p_2(18) -> 30 , p_2(23) -> 20 , p_2(28) -> 25 , p_2(29) -> 20 , p_2(29) -> 24 , s_0(4) -> 4 , s_0(4) -> 31 , s_0(4) -> 33 , s_1(4) -> 34 , s_1(12) -> 11 , s_1(13) -> 10 , s_1(13) -> 12 , s_1(17) -> 16 , s_1(18) -> 15 , s_1(18) -> 17 , s_1(19) -> 14 , s_1(19) -> 18 , s_1(23) -> 22 , s_1(24) -> 21 , s_1(24) -> 23 , s_1(28) -> 27 , s_1(29) -> 26 , s_1(29) -> 28 , s_1(30) -> 25 , s_1(30) -> 29 , s_1(33) -> 32 , twice_1(20) -> 13 , twice_1(20) -> 19 , twice_1(20) -> 20 , twice_1(20) -> 24 , twice_1(20) -> 30 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8 , p^#_1(10) -> 9 , p^#_2(12) -> 35 , c_1_1(9) -> 6 , c_4_2(35) -> 9 , c_5_0() -> 8 , c_5_1() -> 9 , c_5_2() -> 35} 7) { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1))} The usable rules for this path are the following: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1))} Details: We apply the weight gap principle, strictly orienting the rules {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} and weakly orienting the rules {twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [9] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules { 0(x1) -> x1 , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [10] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [6] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [2] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , p^#(p(s(x1))) -> c_4(p^#(x1))} Weak Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , 0(x1) -> x1 , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , p^#(p(s(x1))) -> c_4(p^#(x1))} Weak Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , 0(x1) -> x1 , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { twoto_1(31) -> 20 , twoto_1(31) -> 24 , twoto_1(31) -> 30 , p_1(10) -> 20 , p_1(10) -> 24 , p_1(10) -> 30 , p_1(11) -> 10 , p_1(14) -> 13 , p_1(14) -> 20 , p_1(14) -> 24 , p_1(14) -> 30 , p_1(15) -> 14 , p_1(16) -> 15 , p_1(21) -> 20 , p_1(22) -> 21 , p_1(25) -> 20 , p_1(25) -> 24 , p_1(26) -> 25 , p_1(27) -> 26 , p_1(32) -> 31 , p_1(34) -> 31 , p_1(34) -> 33 , p_2(12) -> 20 , p_2(12) -> 24 , p_2(12) -> 30 , p_2(17) -> 14 , p_2(18) -> 13 , p_2(18) -> 20 , p_2(18) -> 24 , p_2(18) -> 30 , p_2(23) -> 20 , p_2(28) -> 25 , p_2(29) -> 20 , p_2(29) -> 24 , s_0(4) -> 4 , s_0(4) -> 31 , s_0(4) -> 33 , s_1(4) -> 34 , s_1(12) -> 11 , s_1(13) -> 10 , s_1(13) -> 12 , s_1(17) -> 16 , s_1(18) -> 15 , s_1(18) -> 17 , s_1(19) -> 14 , s_1(19) -> 18 , s_1(23) -> 22 , s_1(24) -> 21 , s_1(24) -> 23 , s_1(28) -> 27 , s_1(29) -> 26 , s_1(29) -> 28 , s_1(30) -> 25 , s_1(30) -> 29 , s_1(33) -> 32 , twice_1(20) -> 13 , twice_1(20) -> 19 , twice_1(20) -> 20 , twice_1(20) -> 24 , twice_1(20) -> 30 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8 , p^#_1(10) -> 9 , p^#_2(12) -> 35 , c_1_1(9) -> 6 , c_4_2(35) -> 9} 8) {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} The usable rules for this path are the following: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} Details: We apply the weight gap principle, strictly orienting the rules { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [8] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} and weakly orienting the rules { twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [4] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [1] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [2] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { 0(x1) -> x1 , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twoto(s(x1)) -> p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { 0(x1) -> x1 , twoto^#(s(x1)) -> c_1(p^#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))))) , twoto(0(x1)) -> p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { twoto_1(31) -> 20 , twoto_1(31) -> 24 , twoto_1(31) -> 30 , p_1(10) -> 20 , p_1(10) -> 24 , p_1(10) -> 30 , p_1(11) -> 10 , p_1(14) -> 13 , p_1(14) -> 20 , p_1(14) -> 24 , p_1(14) -> 30 , p_1(15) -> 14 , p_1(16) -> 15 , p_1(21) -> 20 , p_1(22) -> 21 , p_1(25) -> 20 , p_1(25) -> 24 , p_1(26) -> 25 , p_1(27) -> 26 , p_1(32) -> 31 , p_1(34) -> 31 , p_1(34) -> 33 , p_2(12) -> 20 , p_2(12) -> 24 , p_2(12) -> 30 , p_2(17) -> 14 , p_2(18) -> 13 , p_2(18) -> 20 , p_2(18) -> 24 , p_2(18) -> 30 , p_2(23) -> 20 , p_2(28) -> 25 , p_2(29) -> 20 , p_2(29) -> 24 , s_0(4) -> 4 , s_0(4) -> 31 , s_0(4) -> 33 , s_1(4) -> 34 , s_1(12) -> 11 , s_1(13) -> 10 , s_1(13) -> 12 , s_1(17) -> 16 , s_1(18) -> 15 , s_1(18) -> 17 , s_1(19) -> 14 , s_1(19) -> 18 , s_1(23) -> 22 , s_1(24) -> 21 , s_1(24) -> 23 , s_1(28) -> 27 , s_1(29) -> 26 , s_1(29) -> 28 , s_1(30) -> 25 , s_1(30) -> 29 , s_1(33) -> 32 , twice_1(20) -> 13 , twice_1(20) -> 19 , twice_1(20) -> 20 , twice_1(20) -> 24 , twice_1(20) -> 30 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8 , p^#_1(10) -> 9 , c_1_1(9) -> 6} 9) { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1)) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , 0^#(x1) -> c_7()} The usable rules for this path are the following: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , p^#(p(s(x1))) -> c_4(p^#(x1)) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , 0^#(x1) -> c_7()} Details: We apply the weight gap principle, strictly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} and weakly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [6] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} and weakly orienting the rules { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [7] c_4(x1) = [1] x1 + [7] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(x1) -> c_7()} and weakly orienting the rules { p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(x1) -> c_7()} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [2] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1))} and weakly orienting the rules { 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [2] p(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [6] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [15] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { p_0(4) -> 27 , p_0(4) -> 29 , p_0(4) -> 31 , p_0(4) -> 33 , p_0(19) -> 18 , p_0(20) -> 19 , p_0(21) -> 20 , p_0(22) -> 19 , p_0(23) -> 18 , p_0(28) -> 27 , p_0(30) -> 27 , p_0(30) -> 29 , p_0(32) -> 27 , p_0(32) -> 29 , p_0(32) -> 31 , p_1(36) -> 35 , p_1(37) -> 36 , p_1(38) -> 37 , p_1(39) -> 38 , p_1(40) -> 37 , p_1(41) -> 36 , p_1(42) -> 35 , p_1(46) -> 45 , p_1(48) -> 45 , p_1(48) -> 47 , p_1(50) -> 45 , p_1(50) -> 47 , p_1(50) -> 49 , p_1(52) -> 45 , p_1(52) -> 47 , p_1(52) -> 49 , p_1(52) -> 51 , s_0(4) -> 4 , s_0(4) -> 27 , s_0(4) -> 29 , s_0(4) -> 31 , s_0(4) -> 33 , s_0(4) -> 45 , s_0(4) -> 47 , s_0(4) -> 49 , s_0(4) -> 51 , s_0(22) -> 21 , s_0(23) -> 20 , s_0(23) -> 22 , s_0(24) -> 19 , s_0(24) -> 23 , s_0(25) -> 18 , s_0(25) -> 24 , s_0(26) -> 25 , s_0(29) -> 28 , s_0(31) -> 30 , s_0(33) -> 32 , s_1(4) -> 52 , s_1(35) -> 26 , s_1(35) -> 44 , s_1(40) -> 39 , s_1(41) -> 38 , s_1(41) -> 40 , s_1(42) -> 37 , s_1(42) -> 41 , s_1(43) -> 36 , s_1(43) -> 42 , s_1(44) -> 35 , s_1(44) -> 43 , s_1(47) -> 46 , s_1(49) -> 48 , s_1(51) -> 50 , twice_0(27) -> 26 , twice_1(45) -> 44 , p^#_0(4) -> 8 , p^#_0(18) -> 17 , p^#_0(24) -> 34 , p^#_1(36) -> 53 , p^#_1(42) -> 54 , twice^#_0(4) -> 10 , c_3_0(17) -> 10 , c_3_1(53) -> 10 , c_4_0(34) -> 17 , c_4_1(54) -> 53 , 0^#_0(4) -> 16 , c_7_0() -> 16} 10) { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , 0^#(x1) -> c_7()} The usable rules for this path are the following: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , 0^#(x1) -> c_7()} Details: We apply the weight gap principle, strictly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} and weakly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [6] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} and weakly orienting the rules { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [5] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(x1) -> c_7()} and weakly orienting the rules { p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(x1) -> c_7()} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [15] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [5] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [8] 0^#(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [7] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [5] p(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [8] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [15] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { p_0(4) -> 27 , p_0(4) -> 29 , p_0(4) -> 31 , p_0(4) -> 33 , p_0(19) -> 18 , p_0(20) -> 19 , p_0(21) -> 20 , p_0(22) -> 19 , p_0(23) -> 18 , p_0(28) -> 27 , p_0(30) -> 27 , p_0(30) -> 29 , p_0(32) -> 27 , p_0(32) -> 29 , p_0(32) -> 31 , p_1(35) -> 34 , p_1(36) -> 35 , p_1(37) -> 36 , p_1(38) -> 37 , p_1(39) -> 36 , p_1(40) -> 35 , p_1(41) -> 34 , p_1(45) -> 44 , p_1(47) -> 44 , p_1(47) -> 46 , p_1(49) -> 44 , p_1(49) -> 46 , p_1(49) -> 48 , p_1(51) -> 44 , p_1(51) -> 46 , p_1(51) -> 48 , p_1(51) -> 50 , s_0(4) -> 4 , s_0(4) -> 27 , s_0(4) -> 29 , s_0(4) -> 31 , s_0(4) -> 33 , s_0(4) -> 44 , s_0(4) -> 46 , s_0(4) -> 48 , s_0(4) -> 50 , s_0(22) -> 21 , s_0(23) -> 20 , s_0(23) -> 22 , s_0(24) -> 19 , s_0(24) -> 23 , s_0(25) -> 18 , s_0(25) -> 24 , s_0(26) -> 25 , s_0(29) -> 28 , s_0(31) -> 30 , s_0(33) -> 32 , s_1(4) -> 51 , s_1(34) -> 26 , s_1(34) -> 43 , s_1(39) -> 38 , s_1(40) -> 37 , s_1(40) -> 39 , s_1(41) -> 36 , s_1(41) -> 40 , s_1(42) -> 35 , s_1(42) -> 41 , s_1(43) -> 34 , s_1(43) -> 42 , s_1(46) -> 45 , s_1(48) -> 47 , s_1(50) -> 49 , twice_0(27) -> 26 , twice_1(44) -> 43 , p^#_0(4) -> 8 , p^#_0(18) -> 17 , p^#_1(35) -> 52 , twice^#_0(4) -> 10 , c_3_0(17) -> 10 , c_3_1(52) -> 10 , 0^#_0(4) -> 16 , c_7_0() -> 16} 11) { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} The usable rules for this path are the following: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: We apply the weight gap principle, strictly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} and weakly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [8] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [2] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} and weakly orienting the rules { p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [3] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [8] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [8] 0^#(x1) = [1] x1 + [8] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [2] p(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [8] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [15] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { p_0(4) -> 27 , p_0(4) -> 29 , p_0(4) -> 31 , p_0(4) -> 33 , p_0(19) -> 18 , p_0(20) -> 19 , p_0(21) -> 20 , p_0(22) -> 19 , p_0(23) -> 18 , p_0(28) -> 27 , p_0(30) -> 27 , p_0(30) -> 29 , p_0(32) -> 27 , p_0(32) -> 29 , p_0(32) -> 31 , p_1(35) -> 34 , p_1(36) -> 35 , p_1(37) -> 36 , p_1(38) -> 37 , p_1(39) -> 36 , p_1(40) -> 35 , p_1(41) -> 34 , p_1(45) -> 44 , p_1(47) -> 44 , p_1(47) -> 46 , p_1(49) -> 44 , p_1(49) -> 46 , p_1(49) -> 48 , p_1(51) -> 44 , p_1(51) -> 46 , p_1(51) -> 48 , p_1(51) -> 50 , s_0(4) -> 4 , s_0(4) -> 27 , s_0(4) -> 29 , s_0(4) -> 31 , s_0(4) -> 33 , s_0(4) -> 44 , s_0(4) -> 46 , s_0(4) -> 48 , s_0(4) -> 50 , s_0(22) -> 21 , s_0(23) -> 20 , s_0(23) -> 22 , s_0(24) -> 19 , s_0(24) -> 23 , s_0(25) -> 18 , s_0(25) -> 24 , s_0(26) -> 25 , s_0(29) -> 28 , s_0(31) -> 30 , s_0(33) -> 32 , s_1(4) -> 51 , s_1(34) -> 26 , s_1(34) -> 43 , s_1(39) -> 38 , s_1(40) -> 37 , s_1(40) -> 39 , s_1(41) -> 36 , s_1(41) -> 40 , s_1(42) -> 35 , s_1(42) -> 41 , s_1(43) -> 34 , s_1(43) -> 42 , s_1(46) -> 45 , s_1(48) -> 47 , s_1(50) -> 49 , twice_0(27) -> 26 , twice_1(44) -> 43 , p^#_0(4) -> 8 , p^#_0(18) -> 17 , p^#_1(35) -> 52 , twice^#_0(4) -> 10 , c_3_0(17) -> 10 , c_3_1(52) -> 10 , 0^#_0(4) -> 16} 12) { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(s(x1)) -> c_5()} The usable rules for this path are the following: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(s(x1)) -> c_5()} Details: We apply the weight gap principle, strictly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(s(x1)) -> c_5()} and weakly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(s(x1)) -> c_5()} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} and weakly orienting the rules { p^#(s(x1)) -> c_5() , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(s(x1)) -> c_5() , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [3] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(s(x1)) -> c_5() , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [14] p(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [4] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [13] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(s(x1)) -> c_5() , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(s(x1)) -> c_5() , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { p_0(4) -> 21 , p_0(4) -> 23 , p_0(4) -> 25 , p_0(4) -> 27 , p_0(13) -> 12 , p_0(14) -> 13 , p_0(15) -> 14 , p_0(16) -> 13 , p_0(17) -> 12 , p_0(22) -> 21 , p_0(24) -> 21 , p_0(24) -> 23 , p_0(26) -> 21 , p_0(26) -> 23 , p_0(26) -> 25 , p_1(29) -> 28 , p_1(30) -> 29 , p_1(31) -> 30 , p_1(32) -> 31 , p_1(33) -> 30 , p_1(34) -> 29 , p_1(35) -> 28 , p_1(39) -> 38 , p_1(41) -> 38 , p_1(41) -> 40 , p_1(43) -> 38 , p_1(43) -> 40 , p_1(43) -> 42 , p_1(45) -> 38 , p_1(45) -> 40 , p_1(45) -> 42 , p_1(45) -> 44 , s_0(4) -> 4 , s_0(4) -> 21 , s_0(4) -> 23 , s_0(4) -> 25 , s_0(4) -> 27 , s_0(4) -> 38 , s_0(4) -> 40 , s_0(4) -> 42 , s_0(4) -> 44 , s_0(16) -> 15 , s_0(17) -> 14 , s_0(17) -> 16 , s_0(18) -> 13 , s_0(18) -> 17 , s_0(19) -> 12 , s_0(19) -> 18 , s_0(20) -> 19 , s_0(23) -> 22 , s_0(25) -> 24 , s_0(27) -> 26 , s_1(4) -> 45 , s_1(28) -> 20 , s_1(28) -> 37 , s_1(33) -> 32 , s_1(34) -> 31 , s_1(34) -> 33 , s_1(35) -> 30 , s_1(35) -> 34 , s_1(36) -> 29 , s_1(36) -> 35 , s_1(37) -> 28 , s_1(37) -> 36 , s_1(40) -> 39 , s_1(42) -> 41 , s_1(44) -> 43 , twice_0(21) -> 20 , twice_1(38) -> 37 , p^#_0(4) -> 8 , p^#_0(12) -> 11 , p^#_1(29) -> 46 , twice^#_0(4) -> 10 , c_3_0(11) -> 10 , c_3_1(46) -> 10 , c_5_0() -> 8 , c_5_0() -> 11 , c_5_1() -> 46} 13) { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1)) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} The usable rules for this path are the following: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: We apply the weight gap principle, strictly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} and weakly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [2] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} and weakly orienting the rules { 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1))} and weakly orienting the rules { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [2] p(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [8] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [15] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { p_0(4) -> 27 , p_0(4) -> 29 , p_0(4) -> 31 , p_0(4) -> 33 , p_0(19) -> 18 , p_0(20) -> 19 , p_0(21) -> 20 , p_0(22) -> 19 , p_0(23) -> 18 , p_0(28) -> 27 , p_0(30) -> 27 , p_0(30) -> 29 , p_0(32) -> 27 , p_0(32) -> 29 , p_0(32) -> 31 , p_1(36) -> 35 , p_1(37) -> 36 , p_1(38) -> 37 , p_1(39) -> 38 , p_1(40) -> 37 , p_1(41) -> 36 , p_1(42) -> 35 , p_1(46) -> 45 , p_1(48) -> 45 , p_1(48) -> 47 , p_1(50) -> 45 , p_1(50) -> 47 , p_1(50) -> 49 , p_1(52) -> 45 , p_1(52) -> 47 , p_1(52) -> 49 , p_1(52) -> 51 , s_0(4) -> 4 , s_0(4) -> 27 , s_0(4) -> 29 , s_0(4) -> 31 , s_0(4) -> 33 , s_0(4) -> 45 , s_0(4) -> 47 , s_0(4) -> 49 , s_0(4) -> 51 , s_0(22) -> 21 , s_0(23) -> 20 , s_0(23) -> 22 , s_0(24) -> 19 , s_0(24) -> 23 , s_0(25) -> 18 , s_0(25) -> 24 , s_0(26) -> 25 , s_0(29) -> 28 , s_0(31) -> 30 , s_0(33) -> 32 , s_1(4) -> 52 , s_1(35) -> 26 , s_1(35) -> 44 , s_1(40) -> 39 , s_1(41) -> 38 , s_1(41) -> 40 , s_1(42) -> 37 , s_1(42) -> 41 , s_1(43) -> 36 , s_1(43) -> 42 , s_1(44) -> 35 , s_1(44) -> 43 , s_1(47) -> 46 , s_1(49) -> 48 , s_1(51) -> 50 , twice_0(27) -> 26 , twice_1(45) -> 44 , p^#_0(4) -> 8 , p^#_0(18) -> 17 , p^#_0(24) -> 34 , p^#_1(36) -> 53 , p^#_1(42) -> 54 , twice^#_0(4) -> 10 , c_3_0(17) -> 10 , c_3_1(53) -> 10 , c_4_0(34) -> 17 , c_4_1(54) -> 53 , 0^#_0(4) -> 16} 14) { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1))} The usable rules for this path are the following: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1))} Details: We apply the weight gap principle, strictly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} and weakly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [4] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [2] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [11] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [2] p(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [4] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [13] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [8] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(p(s(x1))) -> c_4(p^#(x1))} and weakly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(p(s(x1))) -> c_4(p^#(x1))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [4] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [12] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p^#(p(s(x1))) -> c_4(p^#(x1)) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p^#(p(s(x1))) -> c_4(p^#(x1)) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { p_0(4) -> 21 , p_0(4) -> 23 , p_0(4) -> 25 , p_0(4) -> 27 , p_0(13) -> 12 , p_0(14) -> 13 , p_0(15) -> 14 , p_0(16) -> 13 , p_0(17) -> 12 , p_0(22) -> 21 , p_0(24) -> 21 , p_0(24) -> 23 , p_0(26) -> 21 , p_0(26) -> 23 , p_0(26) -> 25 , p_1(30) -> 29 , p_1(31) -> 30 , p_1(32) -> 31 , p_1(33) -> 32 , p_1(34) -> 31 , p_1(35) -> 30 , p_1(36) -> 29 , p_1(40) -> 39 , p_1(42) -> 39 , p_1(42) -> 41 , p_1(44) -> 39 , p_1(44) -> 41 , p_1(44) -> 43 , p_1(46) -> 39 , p_1(46) -> 41 , p_1(46) -> 43 , p_1(46) -> 45 , s_0(4) -> 4 , s_0(4) -> 21 , s_0(4) -> 23 , s_0(4) -> 25 , s_0(4) -> 27 , s_0(4) -> 39 , s_0(4) -> 41 , s_0(4) -> 43 , s_0(4) -> 45 , s_0(16) -> 15 , s_0(17) -> 14 , s_0(17) -> 16 , s_0(18) -> 13 , s_0(18) -> 17 , s_0(19) -> 12 , s_0(19) -> 18 , s_0(20) -> 19 , s_0(23) -> 22 , s_0(25) -> 24 , s_0(27) -> 26 , s_1(4) -> 46 , s_1(29) -> 20 , s_1(29) -> 38 , s_1(34) -> 33 , s_1(35) -> 32 , s_1(35) -> 34 , s_1(36) -> 31 , s_1(36) -> 35 , s_1(37) -> 30 , s_1(37) -> 36 , s_1(38) -> 29 , s_1(38) -> 37 , s_1(41) -> 40 , s_1(43) -> 42 , s_1(45) -> 44 , twice_0(21) -> 20 , twice_1(39) -> 38 , p^#_0(4) -> 8 , p^#_0(12) -> 11 , p^#_0(18) -> 28 , p^#_1(30) -> 47 , p^#_1(36) -> 48 , twice^#_0(4) -> 10 , c_3_0(11) -> 10 , c_3_1(47) -> 10 , c_4_0(28) -> 11 , c_4_1(48) -> 47} 15) { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1)) , p^#(s(x1)) -> c_5()} The usable rules for this path are the following: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p^#(s(x1)) -> c_5()} Details: We apply the weight gap principle, strictly orienting the rules { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , p^#(s(x1)) -> c_5()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , p^#(s(x1)) -> c_5()} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} and weakly orienting the rules { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , p^#(s(x1)) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [6] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , p^#(s(x1)) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [4] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [4] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1))} and weakly orienting the rules { 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , p^#(s(x1)) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [8] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [15] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , p^#(s(x1)) -> c_5()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , p^#(s(x1)) -> c_5()} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { p_0(4) -> 21 , p_0(4) -> 23 , p_0(4) -> 25 , p_0(4) -> 27 , p_0(13) -> 12 , p_0(14) -> 13 , p_0(15) -> 14 , p_0(16) -> 13 , p_0(17) -> 12 , p_0(22) -> 21 , p_0(24) -> 21 , p_0(24) -> 23 , p_0(26) -> 21 , p_0(26) -> 23 , p_0(26) -> 25 , p_1(30) -> 29 , p_1(31) -> 30 , p_1(32) -> 31 , p_1(33) -> 32 , p_1(34) -> 31 , p_1(35) -> 30 , p_1(36) -> 29 , p_1(40) -> 39 , p_1(42) -> 39 , p_1(42) -> 41 , p_1(44) -> 39 , p_1(44) -> 41 , p_1(44) -> 43 , p_1(46) -> 39 , p_1(46) -> 41 , p_1(46) -> 43 , p_1(46) -> 45 , s_0(4) -> 4 , s_0(4) -> 21 , s_0(4) -> 23 , s_0(4) -> 25 , s_0(4) -> 27 , s_0(4) -> 39 , s_0(4) -> 41 , s_0(4) -> 43 , s_0(4) -> 45 , s_0(16) -> 15 , s_0(17) -> 14 , s_0(17) -> 16 , s_0(18) -> 13 , s_0(18) -> 17 , s_0(19) -> 12 , s_0(19) -> 18 , s_0(20) -> 19 , s_0(23) -> 22 , s_0(25) -> 24 , s_0(27) -> 26 , s_1(4) -> 46 , s_1(29) -> 20 , s_1(29) -> 38 , s_1(34) -> 33 , s_1(35) -> 32 , s_1(35) -> 34 , s_1(36) -> 31 , s_1(36) -> 35 , s_1(37) -> 30 , s_1(37) -> 36 , s_1(38) -> 29 , s_1(38) -> 37 , s_1(41) -> 40 , s_1(43) -> 42 , s_1(45) -> 44 , twice_0(21) -> 20 , twice_1(39) -> 38 , p^#_0(4) -> 8 , p^#_0(12) -> 11 , p^#_0(18) -> 28 , p^#_1(30) -> 47 , p^#_1(36) -> 48 , twice^#_0(4) -> 10 , c_3_0(11) -> 10 , c_3_1(47) -> 10 , c_4_0(28) -> 11 , c_4_1(48) -> 47 , c_5_0() -> 8 , c_5_0() -> 11 , c_5_0() -> 28 , c_5_1() -> 47 , c_5_1() -> 48} 16) {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} The usable rules for this path are the following: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) , twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} Details: We apply the weight gap principle, strictly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} and weakly orienting the rules {twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [1] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] twice(x1) = [1] x1 + [4] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [11] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { twice(s(x1)) -> s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twice^#(s(x1)) -> c_3(p^#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) , twice(0(x1)) -> p(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { p_0(4) -> 21 , p_0(4) -> 23 , p_0(4) -> 25 , p_0(4) -> 27 , p_0(13) -> 12 , p_0(14) -> 13 , p_0(15) -> 14 , p_0(16) -> 13 , p_0(17) -> 12 , p_0(22) -> 21 , p_0(24) -> 21 , p_0(24) -> 23 , p_0(26) -> 21 , p_0(26) -> 23 , p_0(26) -> 25 , p_1(29) -> 28 , p_1(30) -> 29 , p_1(31) -> 30 , p_1(32) -> 31 , p_1(33) -> 30 , p_1(34) -> 29 , p_1(35) -> 28 , p_1(39) -> 38 , p_1(41) -> 38 , p_1(41) -> 40 , p_1(43) -> 38 , p_1(43) -> 40 , p_1(43) -> 42 , p_1(45) -> 38 , p_1(45) -> 40 , p_1(45) -> 42 , p_1(45) -> 44 , s_0(4) -> 4 , s_0(4) -> 21 , s_0(4) -> 23 , s_0(4) -> 25 , s_0(4) -> 27 , s_0(4) -> 38 , s_0(4) -> 40 , s_0(4) -> 42 , s_0(4) -> 44 , s_0(16) -> 15 , s_0(17) -> 14 , s_0(17) -> 16 , s_0(18) -> 13 , s_0(18) -> 17 , s_0(19) -> 12 , s_0(19) -> 18 , s_0(20) -> 19 , s_0(23) -> 22 , s_0(25) -> 24 , s_0(27) -> 26 , s_1(4) -> 45 , s_1(28) -> 20 , s_1(28) -> 37 , s_1(33) -> 32 , s_1(34) -> 31 , s_1(34) -> 33 , s_1(35) -> 30 , s_1(35) -> 34 , s_1(36) -> 29 , s_1(36) -> 35 , s_1(37) -> 28 , s_1(37) -> 36 , s_1(40) -> 39 , s_1(42) -> 41 , s_1(44) -> 43 , twice_0(21) -> 20 , twice_1(38) -> 37 , p^#_0(4) -> 8 , p^#_0(12) -> 11 , p^#_1(29) -> 46 , twice^#_0(4) -> 10 , c_3_0(11) -> 10 , c_3_1(46) -> 10} 17) { twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1)) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , 0^#(x1) -> c_7()} The usable rules for this path are the following: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , p^#(p(s(x1))) -> c_4(p^#(x1)) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , 0^#(x1) -> c_7()} Details: We apply the weight gap principle, strictly orienting the rules {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [7] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} and weakly orienting the rules {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [7] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(x1) -> c_7()} and weakly orienting the rules { p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(x1) -> c_7()} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1))} and weakly orienting the rules { 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [13] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [3] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { s_0(4) -> 4 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8 , 0^#_0(4) -> 16 , c_7_0() -> 16} 18) { twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , 0^#(x1) -> c_7()} The usable rules for this path are the following: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , 0^#(x1) -> c_7()} Details: We apply the weight gap principle, strictly orienting the rules {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [7] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} and weakly orienting the rules {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(x1) -> c_7()} and weakly orienting the rules { p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(x1) -> c_7()} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [1] p(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [12] c_0(x1) = [1] x1 + [4] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , 0^#(x1) -> c_7() , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { s_0(4) -> 4 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8 , 0^#_0(4) -> 16 , c_7_0() -> 16} 19) { twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1)) , p^#(s(x1)) -> c_5()} The usable rules for this path are the following: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(s(x1)) -> c_5()} Details: We apply the weight gap principle, strictly orienting the rules {p^#(s(x1)) -> c_5()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(s(x1)) -> c_5()} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} and weakly orienting the rules {p^#(s(x1)) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [7] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(s(x1)) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [2] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [7] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { 0(x1) -> x1 , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(s(x1)) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [1] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [12] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(p(s(x1))) -> c_4(p^#(x1))} and weakly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(s(x1)) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(p(s(x1))) -> c_4(p^#(x1))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [3] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p^#(p(s(x1))) -> c_4(p^#(x1)) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(s(x1)) -> c_5()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p^#(p(s(x1))) -> c_4(p^#(x1)) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(s(x1)) -> c_5()} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { s_0(4) -> 4 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8 , c_5_0() -> 8} 20) { twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} The usable rules for this path are the following: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: We apply the weight gap principle, strictly orienting the rules {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} and weakly orienting the rules {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1)))))))) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { s_0(4) -> 4 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8 , 0^#_0(4) -> 16} 21) { twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1)) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} The usable rules for this path are the following: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: We apply the weight gap principle, strictly orienting the rules { 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} and weakly orienting the rules { 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [1] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1))} and weakly orienting the rules { twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [1] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [15] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [7] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , 0(x1) -> x1 , p^#(0(x1)) -> c_6(0^#(s(s(s(s(p(s(x1))))))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { s_0(4) -> 4 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8 , 0^#_0(4) -> 16} 22) { twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(s(x1)) -> c_5()} The usable rules for this path are the following: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(s(x1)) -> c_5()} Details: We apply the weight gap principle, strictly orienting the rules {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(s(x1)) -> c_5()} and weakly orienting the rules {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(s(x1)) -> c_5()} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { p^#(s(x1)) -> c_5() , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { 0(x1) -> x1 , p^#(s(x1)) -> c_5() , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [2] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [13] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , p^#(s(x1)) -> c_5() , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , p^#(s(x1)) -> c_5() , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { s_0(4) -> 4 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8 , c_5_0() -> 8} 23) { twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))) , p^#(s(x1)) -> c_5()} The usable rules for this path are the following: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1)))))))))))))) , p^#(s(x1)) -> c_5()} Details: We apply the weight gap principle, strictly orienting the rules {twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(s(x1)) -> c_5()} and weakly orienting the rules {twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(s(x1)) -> c_5()} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [3] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules { p^#(s(x1)) -> c_5() , twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { 0(x1) -> x1 , p^#(s(x1)) -> c_5() , twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [4] p(x1) = [1] x1 + [4] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [13] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , p^#(s(x1)) -> c_5() , twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , p^#(s(x1)) -> c_5() , twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { s_0(4) -> 4 , p^#_0(4) -> 8 , twice^#_0(4) -> 10 , c_5_0() -> 8} 24) { twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1))} The usable rules for this path are the following: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1))))))))))))))))) , p^#(p(s(x1))) -> c_4(p^#(x1))} Details: We apply the weight gap principle, strictly orienting the rules {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1))} and weakly orienting the rules { 0(x1) -> x1 , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [12] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [1] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [15] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [7] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , 0(x1) -> x1 , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p^#(p(s(x1))) -> c_4(p^#(x1)) , 0(x1) -> x1 , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { s_0(4) -> 4 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8} 25) {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} The usable rules for this path are the following: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: We apply the weight gap principle, strictly orienting the rules {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules {twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { 0(x1) -> x1 , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [2] p(x1) = [1] x1 + [1] s(x1) = [1] x1 + [1] twice(x1) = [0] x1 + [0] twoto^#(x1) = [1] x1 + [15] c_0(x1) = [1] x1 + [1] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twoto^#(0(x1)) -> c_0(p^#(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { s_0(4) -> 4 , twoto^#_0(4) -> 6 , p^#_0(4) -> 8} 26) {twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} The usable rules for this path are the following: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , p(0(x1)) -> 0(s(s(s(s(p(s(x1))))))) , 0(x1) -> x1 , twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} Details: We apply the weight gap principle, strictly orienting the rules {twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(x1) -> x1} and weakly orienting the rules {twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(x1) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [8] p(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { 0(x1) -> x1 , twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: twoto(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [12] p(x1) = [1] x1 + [2] s(x1) = [1] x1 + [0] twice(x1) = [0] x1 + [0] twoto^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [6] c_1(x1) = [0] x1 + [0] twice^#(x1) = [1] x1 + [13] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {p(0(x1)) -> 0(s(s(s(s(p(s(x1)))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , 0(x1) -> x1 , twice^#(0(x1)) -> c_2(p^#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { s_0(4) -> 4 , p^#_0(4) -> 8 , twice^#_0(4) -> 10}